1 Cairo Governorate表

Answer the following questions: (Calculator is allowed)
1 Choose the correct answer from those given :
1 The sum of any two side lengths of a triangle is \qquad the length of the third side.
(a) smaller than
(b) equal to
(c) greater than
(d) twice
(2) If the two circles M and N are touching externally and their radii lengths are 4 cm . and 9 cm ., then $\mathrm{MN}=$ \qquad cm.
(a) 4
(b) 5
(c) 9
(d) 13
(3) The sum of measures of two supplementary angles equals
(a) 90°
(b) 180°
(c) 270°
(d) 360°

4 The type of the inscribed angle opposite to an arc greater than the semicircle is \qquad angle.
(a) an acute
(b) a right
(c) an obtuse
(d) a straight

5 If ABCD is a cyclic quadrilateral, $\mathrm{m}(\angle \mathrm{C})=2 \mathrm{~m}(\angle \mathrm{~A})$, then $\mathrm{m}(\angle \mathrm{C})=$ \qquad .$^{\circ}$
(a) 30°
(b) 60°
(c) 90°
(d) 120°

6 ABC is a triangle in which $\mathrm{m}(\angle \mathrm{A})=40^{\circ}, \mathrm{m}(\angle \mathrm{C})=70^{\circ}$, then the number of axes of symmetry of this triangle equals \qquad
(a) 1
(b) 2
(c) 3
(d) 4

2 [a] In the opposite figure :
$\mathrm{HA}=\mathrm{HD}, \mathrm{m}(\angle \mathrm{DAH})=35^{\circ}, \mathrm{m}(\angle \mathrm{ABC})=110^{\circ}$
1 Find with proof : m $(\angle \mathrm{H})$
(2) Prove that : ABDH is a cyclic quadrilateral.

[b] In the opposite figure :
$\overleftrightarrow{\mathrm{AC}}$ is a tangent to the circle at B , $\mathrm{m}(\angle \mathrm{DBC})=140^{\circ}$

Find with proof :

$1 \mathrm{~m}(\angle \mathrm{ABD})$
(2) $\mathrm{m}(\angle \mathrm{H})$

3 [a] In the opposite figure :
$\overline{\mathrm{XY}}$ is a diameter in the circle $\mathrm{M}, \mathrm{m}(\angle \mathrm{LMY})=60^{\circ}$
Find with proof : $1 \mathrm{~m}(\angle \mathrm{XZY})$
$2 \mathrm{~m}(\angle \mathrm{YZL})$

[b] Using the geometric tools, draw the equilateral triangle whose side length is 5 cm . , then draw the circumcircle of it.

4 [a] In the opposite figure :
ABCD is a cyclic quadrilateral
, $\overrightarrow{\mathrm{AC}}$ bisects $\angle \mathrm{BAD}$
and $\mathrm{m}(\angle \mathrm{BAC})=50^{\circ}$
Find with proof : $\mathrm{m}(\angle \mathrm{BCD})$

[b] In the opposite figure :
M and N are two intersecting circles at
A and $\mathrm{C}, \overrightarrow{\mathrm{MH}} \perp \overline{\mathrm{AB}}$
and intersects the circle M at $\mathrm{X}, \mathrm{HX}=\mathrm{DO}$
Prove that : $\mathrm{AB}=\mathrm{AC}$

5 [a] In the opposite figure :
$\overline{\mathrm{AD}}, \overline{\mathrm{BC}}$ are two diameters in the circle M
, $\mathrm{m}(\angle \mathrm{CMD})=40^{\circ}, \overline{\mathrm{AD}} / / \overline{\mathrm{BH}}$
Find with proof : $1 \mathrm{~m}(\angle \mathrm{AMB})$

$$
\text { (2) } \mathrm{m}(\overparen{\mathrm{DH}})
$$

[b] In the opposite figure :

$\overline{\mathrm{AX}}$ and $\overline{\mathrm{AY}}$ are two tangent-segments to the circle M at X and Y respectively , $\mathrm{m}(\angle \mathrm{AMX})=65^{\circ}$ and $\mathrm{AX}=6 \mathrm{~cm}$.
Find with proof : 1 The length of $\overline{\mathrm{AY}}$

$$
\begin{aligned}
& 2 \mathrm{~m}(\angle \mathrm{AXM}) \\
& 3 \mathrm{~m}(\angle \mathrm{XAY})
\end{aligned}
$$

2 Giza Governorate

Answer the following questions :

1 Choose the correct answer :

1 The two diagonals are equal in length and non-perpendicular in the
(a) square.
(b) rhombus.
(c) rectangle.
(d) parallelogram.
(2) If the straight line is a tangent to the circle of diameter length 8 cm ., then the distance between the straight line and the centre is \qquad cm .
(a) 3
(b) 4
(c) 6
(d) 8

3 The length of the side opposite to the angle of measure 30° in the right-angled triangle equals \qquad the length of the hypotenuse.
(a) $\frac{1}{2}$
(b) $\frac{\sqrt{3}}{2}$
(c) $\sqrt{2}$
(d) 2
(4) The inscribed angle which is drawn in a semicircle is
(a) acute.
(b) obtuse.
(c) straight.
(d) right.

5 The point of concurrence of the medians of the triangle divides each of them in the ratio of \qquad from the base.
(a) $1: 2$
(b) $2: 1$
(c) $1: 3$
(d) $3: 2$

6 If ABCD is a cyclic quadrilateral, $\mathrm{m}(\angle \mathrm{A})=60^{\circ}$, then $\mathrm{m}(\angle \mathrm{C})=$
(a) 60°
(b) 30°
(c) 90°
(d) 120°

2 [a] In the opposite figure :
$\overline{\mathrm{MC}} \perp \overline{\mathrm{AB}}, \mathrm{AM}=13 \mathrm{~cm}$.
, $\mathrm{MC}=5 \mathrm{~cm}$.
Find : The length of each of $\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$

[b] In the opposite figure :
$\overline{\mathrm{AC}} / / \overline{\mathrm{MD}}$
, $\mathrm{m}(\angle \mathrm{CAB})=40^{\circ}$
Find with proof : $\mathrm{m}(\angle \mathrm{ABD})$

3 [a] In the opposite figure :
$\mathrm{m}(\angle \mathrm{HAD})=86^{\circ}$
, $\mathrm{m}(\angle \mathrm{DCE})=94^{\circ}$
Prove that : ABCD is a cyclic quadrilateral.
[b] In the opposite figure :

$\mathrm{m}(\angle \mathrm{A})=50^{\circ}, \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments to the circle M
Find: $1 \mathrm{~m}(\angle \mathrm{ABC})$
2) $\mathrm{m}(\angle \mathrm{MCB})$
$3 \mathrm{~m}(\angle \mathrm{CMB})$

4 [a] In the opposite figure :
$A B C$ is an inscribed triangle in a circle M
, $\mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{C})$
, X is the midpoint of $\overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$

Prove that : $\mathrm{MX}=\mathrm{MY}$
[b] In the opposite figure :
$\mathrm{m}(\angle \mathrm{A})=28^{\circ}, \mathrm{m}(\overparen{\mathrm{BH}})=30^{\circ}$
Find : $m(\overparen{D C})$

5 [a] In the opposite figure :
$\mathrm{m}(\angle \mathrm{BCD})=70^{\circ}$
, $\mathrm{m}(\angle \mathrm{ADB})=30^{\circ}$
Find with proof : m ($\angle \mathrm{ABD}$)
[b] In the opposite figure :

$\overrightarrow{\mathrm{AC}}$ and $\overrightarrow{\mathrm{AB}}$ are two tangents to the circle at C and B
, $\mathrm{m}(\angle \mathrm{A})=40^{\circ}$
, $\overrightarrow{\mathrm{AC}} / / \overrightarrow{\mathrm{BH}}$
Find with proof : $1 \mathrm{~m}(\angle \mathrm{CHB})$

(2) $\mathrm{m}(\overparen{\mathrm{BH}})$

3 Alexandria Governorate

Answer the following questions: (Calculator is allowed)

1. Choose the correct answer from those given :

1 The inscribed angle in a semicircle is \qquad angle.
(a) an acute
(b) an obtuse
(c) a straight
(d) a right
(2) ABCD is a cyclic quadrilateral in which $\mathrm{m}(\angle \mathrm{A})=60^{\circ}$, then $\mathrm{m}(\angle \mathrm{C})=$
(a) 60°
(b) 30°
(c) 90°
(d) 120°
(3) If the straight line L is a tangent to the circle M of diameter length 8 cm ., then the distance between L and the centre of the circle equals \qquad cm .
(a) 3
(b) 4
(c) 5
(d) 6

4 The area of the rhombus with diagonal lengths 6 cm . and 8 cm . is \qquad cm^{2}.
(a) 2
(b) 14
(c) 24
(d) 48

5 The length of the side opposite to the angle of measure 30° in the right-angled triangle equals \qquad the length of the hypotenuse.
(a) $\frac{1}{2}$
(b) $\frac{\sqrt{3}}{2}$
(c) $\sqrt{2}$
(d) 2
6. In $\triangle \mathrm{ABC}$, if $(\mathrm{AC})^{2}>(\mathrm{AB})^{2}+(\mathrm{BC})^{2}$, then $\triangle \mathrm{ABC}$ is
(a) right-angled.
(b) acute-angled.
(c) obtuse-angled.
(d) equilateral.

2 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ is a tangent-segment to the circle M at A
, H is the midpoint of $\overline{\mathrm{CD}}$
, $\mathrm{m}(\angle \mathrm{B})=50^{\circ}$
Find : m ($\angle \mathrm{AMH}$)

[b] In the opposite figure :
$\mathrm{m}(\overparen{\mathrm{HC}})=100^{\circ}, \mathrm{m}(\overparen{\mathrm{BD}})=30^{\circ}$
Find with proof : m ($\angle \mathrm{A}$)

Geometry
3 [a] In the opposite figure :
$\mathrm{m}(\overparen{\mathrm{AC}})=\mathrm{m}(\overparen{\mathrm{BC}})$
, $\mathrm{m}(\angle \mathrm{MAB})=50^{\circ}$
Find: m (\angle CAM)

[b] In the opposite figure :
$\mathrm{AB}=\mathrm{CD}, \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$
, $\overline{\mathrm{MY}} \perp \overline{\mathrm{CD}}$
Prove that: $\mathrm{HX}=\mathrm{EY}$

4 [a] In the opposite figure :
$\overline{\mathrm{AB}} / / \overline{\mathrm{CD}}$
Prove that : $\mathrm{m}(\angle \mathrm{AED})=\mathrm{m}(\angle \mathrm{CEB})$

[b] In the opposite figure :
XYZL is a quadrilateral in which
$\mathrm{ZL}=\mathrm{ZY}, \mathrm{m}(\angle \mathrm{ZYL})=40^{\circ}$
, $\mathrm{m}(\angle \mathrm{X})=80^{\circ}$
Prove that : XYZL is a cyclic quadrilateral.

5 [a] In the opposite figure :
A circle M inscribed in $\triangle \mathrm{ABC}$
where $\mathrm{AD}=5 \mathrm{~cm}$.
, $\mathrm{BH}=4 \mathrm{~cm}$.
, $\mathrm{CE}=3 \mathrm{~cm}$.
Find: The perimeter of $\triangle \mathrm{ABC}$

[b] In the opposite figure :
$\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to the circle at B, C , $\mathrm{m}(\angle \mathrm{A})=50^{\circ}$
, $\mathrm{m}(\angle \mathrm{HDC})=115^{\circ}$

Prove that : $\overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABH}$

4 El-Kalyoubia Governorate

Answer the following questions :

1 Choose the correct answer from the given answers :
(1) There are \qquad axes of symmetry to the circle.
(a) 1
(b) 2
(c) 3
(d) an infinite number of.
(2) If ABCD is a cyclic quadrilateral, then $\mathrm{m}(\angle \mathrm{A})+\mathrm{m}(\angle \mathrm{C})=$ \qquad
(a) 90°
(b) 120°
(c) 180°
(d) 270°
(3) In the opposite figure :
$\overrightarrow{\mathrm{BC}}$ is a tangent
, $\mathrm{m}(\angle \mathrm{ABC})=50^{\circ}$
, then $\mathrm{m}(\angle \mathrm{AMB})=$ \qquad

(a) 60°
(b) 100°
(c) 120°
(d) 150°

4 In the opposite figure :
$\overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$
, $\mathrm{AB}=8 \mathrm{~cm}$.
, then $\mathrm{BD}=$ cm.

(a) 2
(b) 3
(c) 4
(d) 5
(5) The measure of the arc which represents $\frac{1}{4}$ the measure of the circle equals
(a) 360°
(b) 270°
(c) 180°
(d) 90°
(6) The number of circles that can be drawn and passes through the terminals of the line segment $\overline{\mathrm{AB}}$ equals \qquad
(a) 1
(b) 2
(c) 3
(d) an infinite number.

2 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords in the circle M , E is the midpoint of $\overline{\mathrm{AC}}, \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}}$ and $\mathrm{m}(\angle \mathrm{BAC})=120^{\circ}$

Prove that : \triangle MXY is an equilateral triangle.

Geometry
[b] In the opposite figure :
$\mathrm{m}(\angle \mathrm{MAB})=50^{\circ}$
Find : m ($\angle \mathrm{ACB}$)

3 [a] In the opposite figure :
Two concentric circles with centre $M, \overline{\mathrm{AB}}$ is a chord of the greater circle and intersects the smaller circle at $\mathrm{C}, \mathrm{D}, \overline{\mathrm{ME}} \perp \overline{\mathrm{AB}}$ Prove that : $\mathrm{AC}=\mathrm{BD}$

[b] In the opposite figure :
$\overrightarrow{\mathrm{CB}} \cap \overrightarrow{\mathrm{ED}}=\{\mathrm{A}\}$
, $\mathrm{m}(\angle \mathrm{A})=30^{\circ}, \mathrm{m}(\overparen{\mathrm{BD}})=44^{\circ}$
Find : $\mathrm{m}(\overparen{\mathrm{EC}})$

4 [a] In the opposite figure :
ABC is a triangle, $\mathrm{AB}=\mathrm{AC}$
, $\overrightarrow{\mathrm{CY}}$ bisects $\angle \mathrm{ACB}$
, $\overrightarrow{\mathrm{BX}}$ bisects $\angle \mathrm{ABC}$
Prove that : BCXY is a cyclic quadrilateral.

[b] In the opposite figure :
Two circles are touching at $\mathrm{B}, \overrightarrow{\mathrm{AB}}$ is a common tangent to the two circles, $\overrightarrow{\mathrm{AC}}$ is a tangent to the smaller circle
, $\overrightarrow{\mathrm{AD}}$ is a tangent to the greater circle, $\mathrm{AC}=10 \mathrm{~cm}$.
, $\mathrm{AD}=(x+7) \mathrm{cm}$.
Find : The value of x

5 [a] In the opposite figure :
$\mathrm{m}(\angle \mathrm{ADB})=30^{\circ}$
, $\mathrm{m}(\angle \mathrm{C})=70^{\circ}$
Find: $m(\angle \mathrm{ABD})$

[b] In the opposite figure :

$\mathrm{m}(\angle \mathrm{DAB})=130^{\circ}$
, $\mathrm{m}(\angle \mathrm{B})=65^{\circ}, \mathrm{AC}=\mathrm{BC}$
Prove that : $\overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the vertices of $\triangle \mathrm{ABC}$

5 El-Sharkia Governorate

Answer the following questions: (Calculator is allowed)

1 Choose the correct answer from those given :
1 The number of symmetry axes of the semicircle is \qquad
(a) zero.
(b) 1
(c) 2
(d) an infinite number.
(2) A circle is of circumference $6 \pi \mathrm{~cm}$., and the straight line L is distant from its centre by 3 cm ., then the straight line L is \qquad
(a) a tangent.
(b) a secant.
(c) outside the circle.
(d) a diameter.

3 The number of circles which passes through three collinear points is \qquad
(a) an infinite number.
(b) two.
(c) one.
(d) zero.

4 If the area of a square equals $50 \mathrm{~cm}^{2}$, then the length of its diagonal equals \qquad cm .
(a) 10
(b) 8
(c) 6
(d) 4

5 If ABCD is a cyclic quadrilateral in which $\mathrm{m}(\angle \mathrm{A})=3 \mathrm{~m}(\angle \mathrm{C})$, then $\mathrm{m}(\angle \mathrm{A})=$ \qquad
(a) 45°
(b) 90°
(c) 120°
(d) 135°
(6) The number of common tangents of two circles touching externally is \qquad
(a) 4
(b) 3
(c) 2
(d) 1

2 [a] In the opposite figure :

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ are two chords equal in length in the circle M , X is the midpoint of $\overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{CD}}$
Prove that : $\mathrm{XE}=\mathrm{YF}$

Geometry
[b] In the opposite figure :
$\overline{\mathrm{AB}}, \overline{\mathrm{AD}}$ are two tangent-segments to the circle M and $\overline{\mathrm{AB}} / / \overline{\mathrm{DC}}$, if $\mathrm{m}(\angle \mathrm{BMC})=120^{\circ}$
, prove that : $\triangle \mathrm{ABD}$ is an equilateral triangle.

3 [a] In the opposite figure :

$\overline{\mathrm{AB}}$ is a diameter of the circle M
, $\mathrm{D} \in \overrightarrow{\mathrm{AB}}, \mathrm{D} \notin \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{DE}} \perp \overrightarrow{\mathrm{AB}}, C \in \overparen{\mathrm{AB}}$
, $\overrightarrow{\mathrm{CB}} \cap \overrightarrow{\mathrm{DE}}=\{\mathrm{E}\}, m(\angle \mathrm{AED})=70^{\circ}$
(1) Prove that : The figure ACDE is a cyclic quadrilateral.

(2) Find :m ($\angle \mathrm{DCE})$
[b] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords in the circle M
If its radius length is $10 \mathrm{~cm} ., \overrightarrow{\mathrm{MX}} \perp \overline{\mathrm{AB}}$ and intersects $\overline{\mathrm{AB}}$ at X and intersects the circle at E, Y is the midpoint of $\overline{\mathrm{AC}}$
, $\mathrm{AB}=16 \mathrm{~cm}$., $\mathrm{m}(\angle \mathrm{CAB})=72^{\circ}$

, find: $1 \mathrm{~m}(\angle \mathrm{XMY})$ The length of $\overline{\mathrm{XE}}$

4 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter of the circle M
, $\overrightarrow{\mathrm{AB}} \cap \overrightarrow{\mathrm{CD}}=\{\mathrm{E}\}$
$, \mathrm{m}(\angle \mathrm{AEC})=40^{\circ}, \mathrm{m}(\overparen{\mathrm{AC}})=100^{\circ}$

Find : $m(\overparen{C D})$
[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter of the circle M
, $\mathrm{m}(\overparen{\mathrm{AC}})=50^{\circ}$
Find : $m(\angle C D B)$

5 [a] In the opposite figure :
$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ are two tangents to the circle M
, $\mathrm{CB}=\mathrm{CD}$
Prove that : $\overrightarrow{\mathrm{CD}}$ is a tangent to the circle passing through the vertices of $\triangle \mathrm{ABC}$

[b] In the opposite figure :

$\overline{\mathrm{AB}}$ is a diameter of the circle M
,$\overline{\mathrm{BD}}$ is a tangent-segment to the circle at B
, E is the midpoint of $\overline{\mathrm{AC}}$
Prove that : The figure MEDB is a cyclic quadrilateral.

6 El-Monofia Governorate

Answer the following questions: (Calculator is allowed)

1 Choose the correct answer from those given :

1 The number of the axes of symmetry of an equilateral triangle equals \qquad
(a) 1
(b) 2
(c) 3
(d) 4
(2) The sum of the measures of the interior angles of the quadrilateral equals
(a) 90°
(b) 180°
(c) 270°
(d) 360°
(3) A circle of circumference 44 cm ., then its area is \qquad cm^{2}. $\left(\pi=\frac{22}{7}\right)$
(a) 22
(b) 49
(c) 88
(d) 154
(4) M and N are two intersecting circles, their radii lengths are 3 cm . and 5 cm . , then $\mathrm{MN} \in$ \qquad
(a) $] 8, \infty[$
(b) $] 2, \infty[$
(c) $] 0,2[$
(d) $] 2,8[$

5 The number of the circles that can be drawn through three non-collinear points is \qquad
(a) zero.
(b) only one.
(c) three.
(d) infinite.

In the opposite figure :

ABCD is a cyclic quadrilateral. If $\mathrm{m}(\angle \mathrm{BAC})=30^{\circ}$
, $\mathrm{m}(\angle \mathrm{ABC})=60^{\circ}$, then $\mathrm{m}(\angle \mathrm{ADB})=$ \qquad

(a) 50°
(b) 60°
(c) 80°
(d) 90°

2 [a] In the opposite figure :
M is a circle with radius length 13 cm .
, $\overline{\mathrm{AB}}$ is a chord of length 24 cm ., C is the midpoint of $\overline{\mathrm{AB}}$
, $\overrightarrow{\mathrm{MC}}$ intersects the circle at D
Find : The length of $\overline{C D}$

[b] In the opposite figure :

ABCD is a quadrilateral in which $\mathrm{AB}=\mathrm{AD}$
, $\mathrm{m}(\angle \mathrm{ABD})=30^{\circ}$
and $m(\angle C)=60^{\circ}$
Prove that : ABCD is a cyclic quadrilateral.

3 [a] In the opposite figure :
ABC is a triangle inscribed in a circle M
, $\mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{C})=50^{\circ}, \mathrm{AX}=3 \mathrm{~cm}$.
, $\overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$ and $\overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
1 Prove that : MX = MY
Find: The length of $\overline{\mathrm{AC}}$

[b] In the opposite figure :
$A B C D$ is a quadrilateral drawn in a circle M
, $\overline{\mathrm{AB}}$ is a diameter in the circle $\mathrm{M}, \mathrm{m}(\angle \mathrm{BCD})=120^{\circ}$
Find: $1 \mathrm{~m}(\angle \mathrm{~A})$
$2 \mathrm{~m}(\angle \mathrm{ABD})$

4 [a] In the opposite figure :
A is a point outside the circle $M, \overrightarrow{A B}$ is a tangent to the circle at B
, $\overrightarrow{\mathrm{AM}}$ intersects the circle M at C , D respectively
and $m(\angle A)=40^{\circ}$
Find : m ($\angle \mathrm{BDC})$

[b] In the opposite figure :
Two circles are touching internally at $\mathrm{A}, \overleftrightarrow{\mathrm{AX}}$ is the common tangent to them at $\mathrm{A}, \overleftrightarrow{\mathrm{AB}}$ and $\overleftrightarrow{\mathrm{AD}}$ intersect the small circle at B, D and the great circle at C, E
Prove that : $\overline{\mathrm{BD}} / / \overline{\mathrm{CE}}$

5 [a] In the opposite figure :
If $\overline{\mathrm{AB}} \cap \overline{\mathrm{CD}}=\{\mathrm{E}\}$
, $\mathrm{m}(\angle \mathrm{ACD})=26^{\circ}, \mathrm{m}(\angle \mathrm{BEC})=92^{\circ}$
, then find : $1 \mathrm{~m}(\widehat{\mathrm{AD}}) \quad 2 \mathrm{~m}(\widehat{\mathrm{BC}})$
[b] ABCD is a parallelogram in which $\mathrm{AC}=\mathrm{BC}$
Prove that : $\overleftrightarrow{\mathrm{CD}}$ is a tangent to the circle passing through the vertices of the triangle ABC

7. El-Gharbia Governorate

Answer the following questions :

1. Choose the correct answer from those given :

1 If the straight line L is a tangent to the circle of diameter length 8 cm ., then the distance between L and the centre of the circle equals \qquad cm .
(a) 3
(b) 4
(c) 6
(d) 8
(2) The area of the rectangle whose length is 3 cm . and its width is 2 cm . equals \qquad cm^{2}.
(a) 4
(b) 5
(c) 6
(d) 10

3 The measure of the inscribed angle equals \qquad the measure of the central angle subtended by the same arc.
(a) half
(b) third
(c) quarter
(d) twice

4 ABCD is a cyclic quadrilateral in which $\mathrm{m}(\angle \mathrm{A})=50^{\circ}$, then $\mathrm{m}(\angle \mathrm{C})=$ \qquad
(a) 25°
(b) 50°
(c) 100°
(d) 130°

5 The number of symmetry axes of the equilateral triangle is \qquad
(a) 1
(b) 2
(c) 3
(d) 0

6 The measure of the inscribed angle in a semicircle equals
(a) 45°
(b) 135°
(c) 90°
(d) 150°

2 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ are two chords in a circle M
$, \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{CD}}$
, $\mathrm{MX}=\mathrm{MY}$ and $\mathrm{YD}=7 \mathrm{~cm}$.
Find : The length of $\overline{\mathrm{AB}}$
[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in a circle M, X is the midpoint of $\overline{\mathrm{AC}}$ and $\overrightarrow{\mathrm{XM}}$ intersects the tangent to the circle at B in Y
Prove that: The figure AXBY is a cyclic quadrilateral.
 Prove that: The fige AXBY isacycqual

3 [a] In the opposite figure :

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ are two parallel chords in a circle M
, $\mathrm{m}(\widehat{\mathrm{AC}})=30^{\circ}$
Find : $m(\angle B E D)$

[b] In the opposite figure :
$\overleftrightarrow{\mathrm{DY}}$ is a tangent to the circle M at A
, $\mathrm{m}(\angle \mathrm{DAC})=130^{\circ}$
Find : $m(\angle \mathrm{ABC})$

4 [a] In the opposite figure :

$\mathrm{E} \in \overrightarrow{\mathrm{AB}}, \mathrm{E} \notin \overline{\mathrm{AB}}, \mathrm{m}(\angle \mathrm{ADB})=55^{\circ}$
, $\mathrm{m}(\angle \mathrm{CBE})=85^{\circ}$

Find : $m(\angle \mathrm{CDB})$
[b] In the opposite figure :
M is a circle,$\overline{\mathrm{AC}} / / \overline{\mathrm{DB}}$
, $m(\angle \mathrm{AMB})=140^{\circ}$
Find : $\mathrm{m}(\angle \mathrm{CAD})$

5 [a] In the opposite figure :
M is a circle , $\overline{A B} / / \overline{C D}, X$ is the midpoint of $\overline{A B}$
, $\overrightarrow{\mathrm{XM}}$ is drawn to intersect $\overline{\mathrm{CD}}$ at Y
Prove that : Y is the midpoint of $\overline{\mathrm{CD}}$

[b] In the opposite figure :
$\overleftrightarrow{\mathrm{AB}}$ and $\overleftrightarrow{\mathrm{CD}}$ are two common tangents to the two circles M and N

$$
, \overleftrightarrow{\mathrm{AB}} \cap \overleftrightarrow{\mathrm{CD}}=\{\mathrm{E}\}
$$

Prove that : $\mathrm{AB}=\mathrm{CD}$

8 El-Dakahlia Governorate

Answer the following questions: (Calculator is permitted)

1 [a] Choose the correct answer :

(1) The sum of measures of the interior angles of the cyclic quadrilateral equals
(a) 90°
(b) 180°
(c) 360°
(d) 720°
(2) The area of a circle is $25 \pi \mathrm{~cm}^{2}$, the straight line L is of distance 5 cm . of its centre, then L is \qquad
(a) outside the circle.
(b) a tangent to the circle.
(c) a secant of the circle.
(d) passing through the centre.

3 If ABCDEF is a regular hexagon drawn inside a circle , then $\mathrm{m}(\widehat{\mathrm{AB}})=$ \qquad
(a) 60°
(b) 90°
(c) 180°
(d) 360°
[b] In the opposite figure :
ABCD is a quadrilateral drawn inside the circle M
, $\mathrm{m}(\angle \mathrm{BMD})=\mathrm{m}(\angle \mathrm{BCD})$
Find : m $(\angle \mathrm{A})$ in degrees.

2 [a] Choose the correct answer :
1 In the opposite figure :
If $\mathrm{E} \in \overrightarrow{\mathrm{AB}}, \mathrm{m}(\angle \mathrm{EBC})=85^{\circ}$
, $\mathrm{m}(\overparen{\mathrm{AB}})=110^{\circ}$, then $\mathrm{m}(\angle \mathrm{BDC})=$ \qquad
(a) 30°
(b) 55°
(c) 85°
(d) 110°

\qquad
(2) The altitudes of the obtuse-angled triangle intersect at a point lying
(a) inside the triangle.
(b) on one of its vertices.
(c) outside the triangle.
(d) at the midpoint of the opposite side to the obtuse angle.
(3) The length of the arc representing half the circle equals \qquad
(a) $2 \pi r$
(b) πr
(c) $\frac{1}{2} \pi r$
(d) $\frac{1}{3} \pi r$
[b] ABCD is a parallelogram, $\mathrm{AC}=\mathrm{BC}$
Prove that : $\overleftrightarrow{C D}$ is a tangent to the circumcircle of $\triangle \mathrm{ABC}$

3 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle $\mathrm{M}, \overline{\mathrm{AB}} \cap \overline{\mathrm{CD}}=\{\mathrm{E}\}$

$$
, \mathrm{m}(\overparen{\mathrm{AD}})=\mathrm{m}(\overparen{\mathrm{BD}})=3 \mathrm{~m}(\overparen{\mathrm{AC}})
$$

Find :m ($\angle \mathrm{AEC}$)

[b] In the opposite figure :
two concentric circles, $\triangle \mathrm{ABC}$ is drawn where its vertices lie on the greater circle and its sides touch the smaller circle at $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$

Prove that : $\triangle \mathrm{ABC}$ is an equilateral triangle.

4 [a] In the opposite figure :

Two circles M and N , their radii lengths are 10 cm .
, 6 cm . respectively and touching internally at A
, $\overline{\mathrm{AB}}$ is a common tangent-segment at A
, the area of $\triangle \mathrm{BMN}=24 \mathrm{~cm}^{2}$
Find: The length of $\overline{\mathrm{AB}}$

[b] $\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ are two parallel chords in the circle $\mathrm{M}, \overline{\mathrm{AD}} \cap \overline{\mathrm{CB}}=\{\mathrm{E}\}$
Prove that : $\triangle \mathrm{EAB}$ is an isosceles triangle.

5 [a] In the opposite figure :

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent-segments to the circle M at B and C , $\overline{\mathrm{AM}} \cap \overline{\mathrm{BC}}=\{\mathrm{D}\}, \mathrm{AB}=8 \mathrm{~cm} ., \mathrm{m}(\angle \mathrm{CAM})=30^{\circ}$

Find: 1 The perimeter of $\triangle \mathrm{ABC}$

$$
\text { (2) } \mathrm{m}(\angle \mathrm{E})
$$

[b] In the opposite figure :

ABCD is a quadrilateral $, \overrightarrow{\mathrm{AX}}, \overrightarrow{\mathrm{BZ}}, \overrightarrow{\mathrm{CZ}}, \overrightarrow{\mathrm{DX}}$ bisect $\angle \mathrm{A}, \angle \mathrm{B}, \angle \mathrm{C}, \angle \mathrm{D}$ respectively

Prove that : The figure XYZL is a cyclic quadrilateral.

9 Ismailia Governorate

Answer the following questions: (Calculators are allowed)
1 Choose the correct answer from those given :
1 The sum of measures of the interior angles of a triangle equals \qquad
(a) 90°
(b) 120°
(c) 180°
(d) 360°
(2) The measure of the arc which represents the quarter of a circle equals
(a) 360°
(b) 180°
(c) 120°
(d) 90°
(3) If the perimeter of a square is 20 cm ., then its area equals cm^{2}
(a) 25
(b) 10
(c) 20
(d) 50

4 In a cyclic quadrilateral, each two opposite angles are \qquad
(a) complementary.
(b) supplementary.
(c) alternate.
(d) equal in measure.

5 The number of circles that can pass through a given point is \qquad
(a) one circle.
(b) two circles.
(c) three circles.
(d) an infinite number.
(6) The centre of the circumcircle of the triangle is the point of intersection of \qquad
(a) its altitudes.
(b) its medians.
(c) the symmetry axes of its sides.
(d) the bisectors of its interior angles.

2 [a] In the opposite figure :

$$
\begin{aligned}
& \overline{\mathrm{AB}} \cap \overline{\mathrm{CD}}=\{\mathrm{E}\} \\
& , \mathrm{m}(\angle \mathrm{AED})=115^{\circ} \\
& , \mathrm{m}(\widehat{\mathrm{AD}})=130^{\circ}
\end{aligned}
$$

Find with proof : m $\overparen{(B C})$
[b] In the opposite figure :
ABXY is a cyclic quadrilateral
, $\overline{\mathrm{YX}} \perp \overline{\mathrm{CB}}$
Prove that : $\overline{\mathrm{CB}}$ is a diameter of the given circle.

3 [a] In the opposite figure :
$\overline{\mathrm{CA}} / / \overline{\mathrm{BD}}$
, $\mathrm{m}(\angle \mathrm{BMA})=140^{\circ}$
Find with proof : m ($\angle \mathrm{CAD}$)

Geometry
[b] In the opposite figure :
$\mathrm{AB}=\mathrm{AD}, \mathrm{m}(\angle \mathrm{A})=80^{\circ}, \mathrm{m}(\angle \mathrm{ABC})=130^{\circ}$
Prove that : $\overline{\mathrm{BC}}$ is a tangent-segment to the circle which passes through the points A, B and D

4 [a] In the opposite figure :
$\mathrm{AB}=\mathrm{AC}$ in the circle M and X, Y are the midpoints
of $\overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ respectively.
Prove that : DX $=$ EY

[b] In the opposite figure :
$\overline{\mathrm{XY}}$ is a diameter of the circle M
, $\mathrm{m}(\widehat{\mathrm{YZ}})=70^{\circ}$
, $\mathrm{m}(\widehat{\mathrm{ZL}})=60^{\circ}$
Find with proof : The measures of the angles of the figure XYZL

5 [a] In the opposite figure :
$\overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABE}, \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to the circle at B, C respectively

$$
, \mathrm{m}(\angle \mathrm{D})=2 x, \mathrm{~m}(\angle \mathrm{CBE})=x
$$

Prove that: $\triangle \mathrm{ABC}$ is an equilateral triangle.

[b] In the opposite figure :
M and N are two circles with radii of lengths 10 cm . and 6 cm . respectively and they are touching internally at $\mathrm{X}, \overrightarrow{\mathrm{XY}}$ is a common tangent at X
If the area of $\triangle \mathrm{YMN}=24 \mathrm{~cm}^{2}$.
, find the proof : The length of $\overline{\mathrm{MY}}$

Suez Governorate

Answer the following questions: (Calculators are allowed)

1 Choose the correct answer from those given :
1 The inscribed angle in a semicircle is \qquad
(a) acute.
(b) right.
(c) obtuse.
(d) straight.

2 In the opposite figure :

ABC is a right-angled triangle at B, D is the midpoint of $\overline{\mathrm{AC}}$
, $\mathrm{BD}=3 \mathrm{~cm}$., then $\mathrm{AC}=$ \qquad cm .
(a) 3
(b) 6
(c) 9
(d) 12

3 If the circle $M \cap$ the circle $N=\{A, B\}$, then the two circles M and N are
(a) distant.
(b) concentric.
(c) touching externally.
(d) intersecting.

4 In the opposite figure :
If M is a circle,$m(\angle B)=130^{\circ}$
, then $m(\angle D)=$ \qquad
(a) 130°
(b) 60°
(c) 50°
(d) 65°

5 If $\angle \mathrm{A}$ and $\angle \mathrm{B}$ are two complementary angles, then $\mathrm{m}(\angle \mathrm{A})+\mathrm{m}(\angle \mathrm{B})=$
(a) 90°
(b) 180°
(c) 360°
(d) 120°

In the opposite figure :
If M is a circle, $\mathrm{m}(\angle \mathrm{AMB})=90^{\circ}$
, then the length of $\overparen{\mathrm{ADB}}=$ \qquad
(a) $2 \pi r$
(b) πr
(c) $\frac{1}{2} \pi r$
(d) $\frac{1}{4} \pi r$

2 [a] In the opposite figure :
$\overrightarrow{\mathrm{AD}}$ is a tangent to the circle M
, $\overrightarrow{\mathrm{AC}}$ intersects the circle M at B and C
, E is the midpoint of $\overline{\mathrm{BC}}, \mathrm{m}(\angle \mathrm{A})=60^{\circ}$
Find with proof : m ($\angle \mathrm{DME}$)

[b] In the opposite figure :
$\overline{\mathrm{AB}} \cap \overline{\mathrm{CD}}=\{\mathrm{E}\}$
$, \mathrm{m}(\overparen{\mathrm{AC}})=50^{\circ}, \mathrm{m}(\overparen{\mathrm{BD}})=100^{\circ}$
Find with proof : m ($\angle \mathrm{AEC}$)

Geometry
3] [a] In the opposite figure :
M is a circle $, \mathrm{AB}=\mathrm{AC}, \overrightarrow{\mathrm{MD}} \perp \overline{\mathrm{AB}}$
intersecting the circle at $\mathrm{X}, \overrightarrow{\mathrm{ME}} \perp \overline{\mathrm{AC}}$
intersecting the circle at Y
Prove that : $\mathrm{XD}=\mathrm{YE}$
[b] In the opposite figure :
$\overleftrightarrow{\mathrm{BC}}$ is a tangent to the circle at B
, $\mathrm{m}(\angle \mathrm{ADB})=70^{\circ}$
Find with proof : $1 \mathrm{~m}(\angle \mathrm{ABC})$
2. $\mathrm{m}(\widehat{\mathrm{AB}})$

4 [a] State two cases of cyclic quadrilateral.
[b] In the opposite figure :
ABCD is a quadrilateral, $\mathrm{E} \in \overrightarrow{\mathrm{BC}}, \mathrm{AB}=\mathrm{AD}$
, $\mathrm{m}(\angle \mathrm{ABD})=30^{\circ}, \mathrm{m}(\angle \mathrm{DCE})=120^{\circ}$
Prove that : ABCD is a cyclic quadrilateral.
5] [a] In the opposite figure :
M is a circle, D is the midpoint of $\overparen{A B}$

$$
, \mathrm{m}(\angle \mathrm{C})=25^{\circ}
$$

Find with proof : m ($\angle \mathrm{AMB}$)

[b] In the opposite figure :

$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ are two tangents to the circle at B and C
, $m(\angle \mathrm{~A})=50^{\circ}$
, $m(\angle \mathrm{CDE})=115^{\circ}$
Prove that : $\overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABE}$

(2) A tangent to a circle of diameter length 6 cm . is at a distance of \qquad cm . from its centre.
(a) 2
(b) 3
(c) 6
(d) 12

In the opposite figure :
A circle of centre M and $\mathrm{m}(\widehat{\mathrm{AB}})=100^{\circ}$, then $\mathrm{m}(\angle \mathrm{ADB})=$
(a) 150°
(b) 100°
(c) 50°
(d) 25°

4 In the opposite figure :
ABCD is a quadrilateral in which $\mathrm{m}(\angle \mathrm{ABD})=30^{\circ}$
, $\mathrm{m}(\angle \mathrm{DCH})=120^{\circ}$
, $\mathrm{AB}=\mathrm{AD}$, then the shape ABCD is called a

(a) rectangle.
(b) rhombus.
(c) cyclic quadrilateral.
(d) parallelogram.

5 The measure of the inscribed angle which is drawn in a semicircle equals
(a) 45°
(b) 90°
(c) 135°
(d) 180°
(6) If M,N are two touching circles internally, their radii lengths are $5 \mathrm{~cm} ., 9 \mathrm{~cm}$. , then $\mathrm{MN}=$ \qquad cm .
(a) 14
(b) 4
(c) 5
(d) 9

7 If the measure of an arc of a circle equals 60°, then its length equals of the circumference.
(a) $\frac{1}{6}$
(b) $\frac{1}{5}$
(c) $\frac{1}{4}$
(d) $\frac{1}{3}$

In the opposite figure :

M is the centre of the circle, $\mathrm{m}(\angle \mathrm{MBC})=32^{\circ}$, then $\mathrm{m}(\overparen{\mathrm{BC}})=$ \qquad
(a) 116°
(b) 32°
(c) 58°
(d) 64°

(9) We can draw a circle passing through the vertices of a
(a) rhombus.
(b) square.
(c) trapezium.
(d) parallelogram.

10 In the opposite figure :
$\mathrm{m}(\angle \mathrm{CMA})=140^{\circ}$
, then $\mathrm{m}(\angle \mathrm{CDA})=$ \qquad
(a) 70°
(b) 110°
(c) 40°
(d) 140°

(11) The area of the square whose side length equals 6 cm . is \qquad cm^{2}
(a) 12
(b) 24
(c) 36
(d) 60

12 In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter of the circle $\mathrm{M}, \mathrm{m}(\overparen{\mathrm{AC}})=\mathrm{m}(\overparen{\mathrm{CD}})=\mathrm{m}(\overparen{\mathrm{DB}})$, then $m(\angle \mathrm{CXD})=$ \qquad
(a) 15°
(b) 30°
(c) 45°
(d) 60°

13 Two tangents drawn from the end points of a diameter of a circle are
(a) perpendicular.
(b) concident.
(c) parallel.
(d) intersecting.

14 In the opposite figure :
$\overline{\mathrm{AB}} \cap \overline{\mathrm{CD}}=\{\mathrm{H}\}$
$, \mathrm{m}(\overparen{\mathrm{AC}})=60^{\circ}, \mathrm{m}(\overparen{\mathrm{BD}})=100^{\circ}$
, then $\mathrm{m}(\angle \mathrm{DHB})=$ \qquad

(a) 16°
(b) 100°
(c) 80°
(d) 60°

15 In the opposite figure :
ABCD is a cyclic quadrilateral
, $\mathrm{m}(\angle \mathrm{BAC})=60^{\circ}$, then $\mathrm{m}(\angle \mathrm{BDC})=$
(a) 300°
(b) 120°
(c) 60°
(d) 30°

16 In the opposite figure :

$\triangle \mathrm{MAB}$ is equilateral, $\overrightarrow{\mathrm{BC}}$ is a tangent at B , then $\mathrm{m}(\angle \mathrm{ABC})=$ \qquad
(a) 120°
(b) 90°
(c) 60°
(d) 30°

17 The smallest radius length of a circle can be drawn passing through the two points A and B where $A B=6 \mathrm{~cm}$. is \qquad cm.
(a) 1
(b) 2
(c) 3
(d) 4

18 The circumference of a circle whose diameter length equals 7 cm . is \qquad cm .
(a) 7π
(b) 14π
(c) 49π
(d) $\frac{7}{2} \pi$

19 The number of common tangents for two distant circles is \qquad
(a) one.
(b) two.
(c) three.
(d) four.

20 The sum of the measures of all interior angles of any triangle equals
(a) 180°
(b) 360°
(c) 540°
(d) 720°
(21) The diameter is passing through the centre of the circle.
(a) a straight line
(b) a ray
(c) a tangent.
(d) a chord

Second Essay questions

In the opposite figure :
M is the centre of a circle
, $\mathrm{AB}=\mathrm{AC}, \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}, \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
Show that : MX = MY
In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter of the circle M , $\mathrm{m}(\angle \mathrm{ACD})=115^{\circ}$
Find : $m(\angle D A B)$

In the opposite figure :
$\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents touching the circle at B, C respectively and $\mathrm{m}(\angle \mathrm{BDC})=70^{\circ}$

Find: $m(\angle A)$

12 Damietta Governorate

Answer the following questions: (Calculators are allowed)
1 Choose the correct answer from those given :
1 The corresponding angles of the two similar polygons are \qquad
(a) different
(b) proportional
(c) alternate
(d) equal
(2) The inscribed angle drawn in a semicircle is \qquad
(a) acute.
(b) right.
(c) obtuse.
(d) straight.
(3) The image of the point $(-3,4)$ by reflection in the y-axis is
(a) $(3,4)$
(b) $(3,-4)$
(c) $(-3,-4)$
(d) $(4,-3)$

4 M and N are two circles, their radii lengths are 5 cm . and 3 cm ., if $\mathrm{MN}=6 \mathrm{~cm}$. , then the two circles are \qquad
(a) distant.
(b) touching externally.
(c) intersecting.
(d) one inside the other.

5 ABCD is a cyclic quadrilateral, where $\mathrm{m}(\angle \mathrm{A})=2 \mathrm{~m}(\angle \mathrm{C})$, then $\mathrm{m}(\angle \mathrm{C})=$ \qquad
(a) 50°
(b) 60°
(c) 90°
(d) 120°
(6) A rectangle, its length is 5 cm . and its perimeter is 16 cm ., then its area is cm^{2}
(a) 15
(b) 40
(c) 55
(d) 80

Geometry

2 [a] In the opposite figure :
M is a circle, $\mathrm{m}(\angle \mathrm{EMC})=120^{\circ}$
and $\mathrm{AB}=\mathrm{EB}$
Find with proof : m $(\angle \mathrm{A})$

[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle M
, X is the midpoint of $\overline{\mathrm{CA}}$ and $\overline{\mathrm{BY}}$
is a tangent-segment to the circle M at B
Prove that : The figure AXBY is a cyclic quadrilateral.

3 [a] In the opposite figure :
A triangle ABC is inscribed in the circle M , in which :
$\overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
, MX = MY and
$m(\angle A)=50^{\circ}$

Find with proof: $m(\angle B)$
[b] In the opposite figure :
ABC is an inscribed triangle in a circle
, $\overline{\mathrm{ED}} / / \overline{\mathrm{CB}}$
Prove that : $m(\angle \mathrm{DAC})=\mathrm{m}(\angle \mathrm{EAB})$

4 [a] In the opposite figure :
$\overrightarrow{\mathrm{AD}} / / \overrightarrow{\mathrm{BC}}$
, $\mathrm{AB}=\mathrm{BC}=\mathrm{CA}$
Prove that : $\overrightarrow{\mathrm{AD}}$ is a tangent to the circumcircle of $\triangle \mathrm{ABC}$

[b] In the opposite figure :
M and N are two intersecting circles at A and B
, $\overleftrightarrow{A D}$ is drawn to intersect circle M at E and circle N at D
, $\overleftrightarrow{\mathrm{BC}}$ is drawn to intersect circle M at F and circle N at C
, and $\mathrm{m}(\angle \mathrm{C})=75^{\circ}$

1 Find $: m(\angle \mathrm{~F})$ 2) Prove that $: \overline{\mathrm{CD}} / / \overline{\mathrm{EF}}$
5 [a] Draw $\overline{\mathrm{AB}}$ where $\mathrm{AB}=6 \mathrm{~cm}$., then draw a circle passing through the two points A and B , the length of its radius is 4 cm ., using your geometric instruments.
How many circles can be drawn?
(Don't remove the arcs)

[b] In the opposite figure :

$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ are two tangents to the circle at B and C
, $m(\angle \mathrm{E})=110^{\circ}$
, $\mathrm{m}(\angle \mathrm{A})=40^{\circ}$
Prove that : $\overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABD}$

13 Kafr El-Sheikh Governorate

Answer the following questions : (Calculators are permitted)

1 Choose the correct answer from those given :
In the opposite figure :
$m(\overparen{D B})=$ \qquad
(a) 25°
(b) 50°
(c) 80°
(d) 130°

(2) The measure of the supplementary angle of an angle whose measure is 60° equals
(a) 30°
(b) 90°
(c) 120°
(d) 60°
(3) The inscribed angle drawn in a semicircle is
(a) acute.
(b) obtuse.
(c) straight.
(d) right.
(4) If M and N are two touching circles externally, their radii lengths are 3 cm . and 5 cm . , then $\mathrm{MN}=$ \qquad cm .
(a) 9
(b) 8
(c) 2
(d) 6
(5) In the opposite figure :
$y=$ \qquad
(a) 50°
(b) 25°
(c) 100°
(d) 130°

(6) The cyclic quadrilateral from the following figures is \qquad
(a) a rhombus.
(b) a rectangle.
(c) a trapezium.
(d) a parallelogram.

Geometry

2. [a] In the opposite figure :

Prove that $: \overleftrightarrow{X Y}$ is a tangent to the circle N at Y

[b] A is a point outside the circle $M, \overrightarrow{A B}$ is a tangent to the circle at $B, \overrightarrow{A M}$ intersects the circle at C and D respectively, $\mathrm{m}(\angle \mathrm{A})=40^{\circ}$ Find with proof : $\mathrm{m}(\angle \mathrm{BDC})$

3 [a] In the opposite figure :
$\mathrm{MD}=\mathrm{ME}$
Find: $m(\angle B)$

[b] $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords in a circle M, X and Y are the midpoints of $\overparen{\mathrm{AB}}$ and $\overparen{\mathrm{AC}}$ respectively, $\overline{X Y}$ was drawn and intersected $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ at D and E respectively. Prove that : $\mathrm{AD}=\mathrm{AE}$

4] [a] In the opposite figure :
$\mathrm{XY}=\mathrm{YL}, \mathrm{m}(\angle \mathrm{XYL})=100^{\circ}, \mathrm{m}(\angle \mathrm{Z})=40^{\circ}$
Prove that : The points $\mathrm{X}, \mathrm{Y}, \mathrm{L}$ and Z have only one circle passing through them.

[b] Using the geometrical tools, draw $\triangle X Y Z$ which has $X Y=5 \mathrm{~cm}$.
, $\mathrm{YZ}=3 \mathrm{~cm}$. and $\mathrm{ZX}=7 \mathrm{~cm}$., then draw the outer circle of $\Delta \mathrm{XYZ}$
, then find by measuring the length of its radius.
(Don't remove the arcs)
5. [a] In the opposite figure :

Prove that : $A B C D$ is a cyclic quadrilateral.
[b] In the opposite figure :

$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ are two tangents to the circle at B and C
Prove that: $1 \overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABD} \quad$ 2 $\overleftrightarrow{\mathrm{BD}} / / \overleftrightarrow{\mathrm{AC}}$

14 El-Beheira Governorate

Answer the following questions: (Calculator is permitted)

1 Choose the correct answer from the given ones :
1 In $\triangle \mathrm{ABC}$, if $(\mathrm{AB})^{2}+(\mathrm{BC})^{2}<(\mathrm{AC})^{2}$, then $\angle \mathrm{B}$ is \qquad
(a) obtuse.
(b) right.
(c) acute.
(d) straight.
(2) The measure of the exterior angle of the equilateral triangle equals
(a) 30°
(b) 45°
(c) 60°
(d) 120°

3 A square its area is $50 \mathrm{~cm}^{2}$, then its diagonal length equals \qquad cm .
(a) 5
(b) 10
(c) 15
(d) 25

4 The number of circles which can be drawn passing through the end points of the line segment $\overline{\mathrm{AB}}$ equals \qquad
(a) 1
(b) 2
(c) 3
(d) infinite.

5 XYZL is a cyclic quadrilateral, $\mathrm{m}(\angle \mathrm{X})=65^{\circ}$, then $\mathrm{m}(\angle Z)=$ \qquad
(a) 30°
(b) 60°
(c) 90°
(d) 115°

6 The measure of the inscribed angle drawn in a semicircle equals \qquad
(a) 45°
(b) 90°
(c) 120°
(d) 180°

2 [a] In the opposite figure :
$\overrightarrow{\mathrm{AD}}$ is a tangent to the circle M at D
, $\overrightarrow{\mathrm{AC}}$ intersects the circle M at B and C
, E is the midpoint of $\overline{\mathrm{BC}}, \mathrm{m}(\angle \mathrm{A})=56^{\circ}$
Find : $m(\angle D M E)$

[b] In the opposite figure :

$\overleftrightarrow{\mathrm{CD}}$ is a tangent to the circle at $\mathrm{C}, \overleftrightarrow{\mathrm{CD}} / / \overline{\mathrm{AB}}$
, $\mathrm{m}(\angle \mathrm{AMB})=120^{\circ}$
Prove that : The triangle CAB is an equilateral triangle.

3 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ are two chords in the circle $\mathrm{M}, \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$ and intersects the circle at $\mathrm{F}, \overrightarrow{\mathrm{MY}} \perp \overline{\mathrm{CD}}$ and intersects the circle at $\mathrm{E}, \mathrm{FX}=\mathrm{EY}$

Prove that : $\mathrm{AB}=\mathrm{CD}$

[b] In the opposite figure :
$\mathrm{E} \in \overrightarrow{\mathrm{AB}}, \mathrm{E} \notin \overrightarrow{\mathrm{AB}}$
, $\mathrm{m}(\widehat{\mathrm{AB}})=100^{\circ}$
, $\mathrm{m}(\angle \mathrm{CBE})=85^{\circ}$
Find : m ($\angle \mathrm{BDC})$

4 [a] In the opposite figure :
$\overline{\mathrm{AB}} \cap \overline{\mathrm{CD}}=\{\mathrm{E}\}$
, $\mathrm{EA}=\mathrm{ED}$
Prove that : EB $=\mathrm{EC}$

[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle M
, $\mathrm{D} \in \overrightarrow{\mathrm{AB}}, \mathrm{D} \notin \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{DE}} \perp \overrightarrow{\mathrm{AB}}$
, $\mathrm{C} \in \overparen{\mathrm{AB}}$ and $\overrightarrow{\mathrm{CB}} \cap \overrightarrow{\mathrm{DE}}=\{\mathrm{E}\}$
Prove that : ACDE is a cyclic quadrilateral.

5 [a] In the opposite figure :
$\overrightarrow{\mathrm{XA}}$ and $\overrightarrow{\mathrm{XB}}$ are two tangents to the circle at A and B
, $\mathrm{m}(\angle \mathrm{AXB})=70^{\circ}$
, $m(\angle \mathrm{DCB})=125^{\circ}$
Prove that : $\overrightarrow{\mathrm{AB}}$ bisects $\angle \mathrm{DAX}$

[b] ABC is a triangle inscribed in a circle,$\overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle at $\mathrm{A}, \mathrm{X} \in \overline{\mathrm{AB}}$, $\mathrm{Y} \in \overline{\mathrm{AC}}$ where $\overline{\mathrm{XY}} / / \overline{\mathrm{BC}}$
Prove that : $\overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the points A, X and Y

15 El-Fayoum Governorate

Answer the following questions : (Calculator is allowed)

1 Choose the correct answer :
1 A triangle has only one symmetry axis, and its side lengths are $8 \mathrm{~cm} ., 4 \mathrm{~cm} ., x \mathrm{~cm}$. , then $x=$ \qquad
(a) 12
(b) 8
(c) 4
(d) 2
(2) M and N are two intersecting circles, their radii lengths are 3 cm . and 5 cm . , then $\mathrm{MN} \in \ldots \ldots \ldots \ldots$.
(a) $] 0,2[$
(b) $] 2,8[$
(c) $] 8, \infty[$
(d) $] 2, \infty[$

3 In $\triangle \mathrm{ABC}$, if $(\mathrm{AB})^{2}-3=(\mathrm{AC})^{2}+(\mathrm{BC})^{2}$, then $\angle \mathrm{C}$ is
(a) obtuse.
(b) right.
(c) straight.
(d) acute.
(4) The number of common tangents of two distant circles is
(a) 1
(b) 2
(c) 3
(d) 4

5 If the area of a square is $25 \mathrm{~cm}^{2}$, then its perimeter is \qquad
(a) 4
(b) 10
(c) 14
(d) 20

6 A circle with diameter length $(2 x+5) \mathrm{cm}$., the straight line L is at a distance $(x+2) \mathrm{cm}$. from its centre, then the straight line L is \qquad
(a) a tangent.
(b) a secant.
(c) outside the circle.
(d) a diameter.
2. [a] In the opposite figure :
$\overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two chords equal in length in the circle M, X is the midpoint of $\overline{\mathrm{AB}}, \mathrm{Y}$ is the midpoint of $\overline{\mathrm{AC}}, \mathrm{m}(\angle \mathrm{CAB})=70^{\circ}$
1 Find : m ($\angle \mathrm{EMD}$)
(2) Prove that : $\mathrm{XD}=\mathrm{YE}$

[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle $\mathrm{M}, \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}, \mathrm{m}(\widetilde{\mathrm{CD}})=100^{\circ}$, $\mathrm{m}(\angle \mathrm{AEC})=3 x-25^{\circ}$
Find: 1 The value of x

$$
\text { (2) } \mathrm{m}(\overparen{\mathrm{BD}})
$$

3 [a] Find the measure of the arc which represents $\frac{1}{4}$ the measure of the circle, then calculate the length of this arc if the radius length of the circle is 14 cm .

$$
\left(\text { Where } \pi=\frac{22}{7}\right)
$$

[b] In the opposite figure :
$\overrightarrow{\mathrm{AD}}$ is a tangent to the circle at A
, $\mathrm{m}(\angle \mathrm{DAC})=130^{\circ}$
Find by proof : m ($\angle B$)

4 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter of the circle M
, $\overline{\mathrm{BD}}$ is a tangent-segment to the circle at B
, E is the midpoint of $\overline{\mathrm{AC}}$
Prove that : The figure EMBD is a cyclic quadrilateral.

Geometry

[b] In the opposite figure :
$\overrightarrow{\mathrm{XA}}$ and $\overrightarrow{\mathrm{XB}}$ are two tangents to the circle at A and B
, $m(\angle X)=70^{\circ}$
, $\mathrm{m}(\angle \mathrm{DCB})=125^{\circ}$
Prove that : $\overrightarrow{\mathrm{AB}}$ bisects $\angle \mathrm{DAX}$

5 [a] In the opposite figure :
$\mathrm{m}(\angle \mathrm{A})=30^{\circ}, \mathrm{m}(\overparen{\mathrm{BD}})=44^{\circ}$
, $\mathrm{m}(\angle \mathrm{DCE})=48^{\circ}$
Find : $\mathrm{m} \overparen{(\mathrm{EC})}, \mathrm{m}(\overparen{(\mathrm{BC})}$

[b] In the opposite figure :
$\overrightarrow{\mathrm{AF}}$ is a tangent to the circle at A
, $\overrightarrow{\mathrm{AF}} / / \overrightarrow{\mathrm{DE}}$
Prove that : BCDE is a cyclic quadrilateral.

16 Beni Suef Governorate

Answer the following questions: (Calculator is allowed)

1 Choose the correct answer from those given :
1 The length of the side opposite to the angle of measure 30° in the right-angled triangle equals \qquad the length of the hypotenuse.
(a) $\frac{1}{4}$
(b) $\frac{1}{3}$
(c) $\frac{1}{2}$
(d) 2
(2) The inscribed angle which is drawn in a semicircle is \qquad
(a) right.
(b) acute.
(c) obtuse.
(d) reflex.
(3) The two diagonals are equal in length and not perpendicular in the
(a) parallelogram.
(b) rectangle.
(c) rhombus.
(d) square.
(4) Two circles with centres M and N are intersecting, their radii lengths are 3 cm . and 5 cm . , then $M N \in \ldots \ldots \ldots \ldots .$.
(a) $] 2,8[$
(b) $] 8, \infty[$
(c) $] 0,2[$
(d) $] 2, \infty[$

5 ABCD is a cyclic quadrilateral in which $\mathrm{m}(\angle \mathrm{A})=2 \mathrm{~m}(\angle \mathrm{C})$, then $\mathrm{m}(\angle \mathrm{C})=$
(a) 60°
(b) 30°
(c) 90°
(d) 120°

6 If two polygons are similar, the ratio between the lengths of two corresponding sides is $1: 3$ and the perimeter of the smaller polygon is 15 cm ., then the perimeter of the greater polygon is \qquad cm .
(a) 30
(b) 45
(c) 60
(d) 75

2 [a] In the opposite figure :

A circle of centre M, D is the midpoint of $\overline{A B}$
, $\overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}$
, $\mathrm{MD}=\mathrm{ME}$ and $\mathrm{m}(\angle \mathrm{B})=70^{\circ}$

Find with proof : m $(\angle \mathrm{A})$
[b] In the opposite figure :
A circle of centre $M, m(\angle B M C)=100^{\circ}$
, $\mathrm{m}(\angle \mathrm{ABD})=120^{\circ}$
Find with proof : m ($\angle \mathrm{DCM})$

3 [a] In the opposite figure :

$\mathrm{E} \in \overrightarrow{\mathrm{AB}}, \mathrm{E} \notin \overrightarrow{\mathrm{AB}}$
, $\mathrm{m}(\widehat{\mathrm{AB}})=110^{\circ}$
and $\mathrm{m}(\angle \mathrm{CBE})=100^{\circ}$
Find : $m(\angle B D C)$

[b] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent-segments
to the circle at B and C
, $\mathrm{m}(\angle \mathrm{A})=50^{\circ}, \mathrm{m}(\angle \mathrm{D})=115^{\circ}$
Prove that : $\overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABE}$

4 [a] In the opposite figure :

$\overline{\mathrm{AB}}, \overline{\mathrm{CB}}$ are two chords in the circle whose radius length is 5 cm . ,$\overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$ intersecting $\overline{\mathrm{AB}}$ at D and intersecting the circle at E , X is the midpoint of $\overline{\mathrm{BC}}, \mathrm{AB}=8 \mathrm{~cm} ., \mathrm{m}(\angle \mathrm{ABC})=56^{\circ}$
Find : $m(\angle D M X)$, the length of $\overline{\mathrm{DE}}$

[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle, $\overrightarrow{\mathrm{AB}} \cap \overrightarrow{\mathrm{CD}}=\{\mathrm{E}\}$
, $\mathrm{m}(\angle \mathrm{AEC})=30^{\circ}$ and $\mathrm{m}(\overparen{\mathrm{AC}})=80^{\circ}$
Find : $m(\overparen{C D})$

5 [a] In the opposite figure :
ABC is a triangle drawn inside a circle , $\overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle at A
, $\mathrm{X} \in \overline{\mathrm{AB}}, \mathrm{Y} \in \overline{\mathrm{AC}}$ where $\overline{\mathrm{XY}} / / \overline{\mathrm{BC}}$
Prove that : $\overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through
 the points A, X and Y

[b] In the opposite figure :

$\overline{\mathrm{AB}}$ is a diameter in the circle M
, X is the midpoint of $\overline{\mathrm{AC}}$ and $\overrightarrow{\mathrm{XM}}$ intersects the tangent of the circle at B in Y

Prove that: 1 The figure AXBY is a cyclic quadrilateral.

(2) Determine the centre of the circle passing through the vertices of the quadrilateral AXBY

17 El-Menia Governorate

Answer the following questions: (Calculators are allowed)
1 Choose the correct answer from those given :
1 If ABCD is a cyclic quadrilateral, where $\mathrm{m}(\angle \mathrm{B})=50^{\circ}$, then $\mathrm{m}(\angle \mathrm{D})=$ \qquad
(a) 25°
(b) 50°
(c) 100°
(d) 130°
(2) The point of concurrence of the medians of the triangle divides the median by the ratio \qquad from the base.
(a) $1: 2$
(b) $2: 1$
(c) $1: 3$
(d) $3: 1$

3 The measure of the arc which represents half the measure of the circle equals
(a) 180°
(b) 90°
(c) 120°
(d) 240°

4 In $\triangle \mathrm{ABC}$, if $(\mathrm{BC})^{2}=(\mathrm{AB})^{2}+(\mathrm{AC})^{2}$, then $\mathrm{m}(\angle \mathrm{A})=$ \qquad
(a) 40°
(b) 50°
(c) 90°
(d) 120°

5 The inscribed angle drawn in a semicircle is
(a) acute.
(b) obtuse.
(c) right
(d) straight.

6 The angle of measure 20° is the complementary angle of the angle of measure
(a) 20°
(b) 40°
(c) 70°
(d) 120°

2 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords in the circle M
, D is the midpoint of $\overline{\mathrm{AB}}, \mathrm{H}$ is the midpoint of $\overline{\mathrm{AC}}$, $m(\angle B A C)=60^{\circ}$ Find : $m(\angle D M H)$

[b] In the opposite figure :
ABC is a triangle inscribed in a circle
, $\overleftrightarrow{\mathrm{BD}}$ is a tangent to the circle at $\mathrm{B}, \mathrm{X} \in \overline{\mathrm{AB}}$
and $\mathrm{Y} \in \overline{\mathrm{BC}}$, where $\overline{\mathrm{XY}} / / \overleftrightarrow{\mathrm{BD}}$
Prove that : AXYC is a cyclic quadrilateral.

3 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords equal in length in the circle M, X is the midpoint of $\overline{\mathrm{AB}}$ and Y is the midpoint of $\overline{\mathrm{AC}}$

Prove that : $\mathrm{XD}=\mathrm{YE}$

[b] In the opposite figure :
M is a circle
, $\mathrm{m}(\angle \mathrm{CMA})=150^{\circ}$
Find : $m(\angle C D A)$

4 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent-segments to the circle at B and $\mathrm{C}, \mathrm{m}(\angle \mathrm{A})=40^{\circ}$
Find with proof : $m(\angle D)$

[b] In the opposite figure :
$\overline{\mathrm{BC}}$ is a diameter in the circle $\mathrm{M}, \overline{\mathrm{ED}} \perp \overline{\mathrm{BC}}$

Prove that : ABDE is a cyclic quadrilateral.

5 [a] In the opposite figure :

A, B and C are three points lie on the circle M where $m(\overparen{A B})=m(\overparen{B C})=m(\overparen{C A})$
Find by proof : m $(\angle \mathrm{A})$

[b] In the opposite figure :

ABC is a triangle inscribed in the circle M , $\mathrm{m}(\angle \mathrm{A})=30^{\circ}$

Prove that: $\triangle \mathrm{MBC}$ is an equilateral triangle.

18 Assiut Governorate

Answer the following questions: (Calculator is allowed)

1 Choose the correct answer :

1 The number of circles which passes through three collinear points is
(a) zero.
(b) 1
(c) 3
(d) infinite.
(2) A square has a surface area of $50 \mathrm{~cm}^{2}$, then the length of its diagonal is \qquad cm .
(a) 5
(b) 10
(c) 15
(d) 25
(3) ABC is a triangle, $(\mathrm{AC})^{2}>(\mathrm{AB})^{2}+(\mathrm{BC})^{2}$, then $\angle \mathrm{ABC}$ is \qquad
(a) obtuse.
(b) acute.
(c) right.
(d) straight.

4 The measure of the arc which equals third the measure of the circle is \qquad
(a) 60°
(b) 90°
(c) 120°
(d) 240°

5 ABCD is a cyclic quadrilateral, $\mathrm{m}(\angle \mathrm{A})=3 \mathrm{~m}(\angle \mathrm{C})$, then $\mathrm{m}(\angle \mathrm{A})=$
(a) 90°
(b) 45°
(c) 135°
(d) 120°

6 The measure of the reflex angle of the angle that is measured 100° equals
(a) 80°
(b) 90°
(c) 200°
(d) 260°

2 [a] In the opposite figure :
XYZ is a triangle inscribed in a circle M
, D, E are the midpoints of $\overline{\mathrm{XY}}, \overline{\mathrm{XZ}}$ respectively
, $\mathrm{MD}=\mathrm{ME}, \mathrm{m}(\angle \mathrm{DME})=120^{\circ}$
Prove that : $\triangle \mathrm{XYZ}$ is an equilateral triangle.

[b] In the opposite figure :

$\overline{\mathrm{AB}}$ is a diameter in the circle M
, $\overline{\mathrm{AB}} / / \overline{\mathrm{CD}}$
, $\mathrm{m}(\widehat{\mathrm{CD}})=100^{\circ}$
Find with proof : m ($\angle \mathrm{AEC})$

3 [a] In the opposite figure :
A circle with centre M , $\mathrm{m}(\angle \mathrm{BMD})=150^{\circ}$

Find with proof : m ($\angle \mathrm{BCD}$)
[b] In the opposite figure :

$\overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle at A
, ABC is a triangle inscribed in the circle
, $\mathrm{X} \in \overline{\mathrm{AB}}, \mathrm{Y} \in \overline{\mathrm{AC}}$
, $\overline{\mathrm{XY}} / / \overline{\mathrm{BC}}$
Prove that : $\overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through
 the points A, X and Y

4 [a] Two circles M and N with radii lengths 8 cm . and 6 cm . respectively
Find the length of $\overline{\mathrm{MN}}$ in each of the following cases :
1 The two circles are touching externally.
(2) The two circles are touching internally.
(3) The two circles are concentric.

[b] In the opposite figure :

$\overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments to the circle M at $\mathrm{B}, \mathrm{C}, \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}, \mathrm{m}(\angle \mathrm{BMD})=130^{\circ}$

Find with proof : m $(\angle \mathrm{A})$

5 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle M
, $\overline{\mathrm{BC}}$ is a tangent-segment to the circle at B
, $\overline{\mathrm{ME}} \perp \overline{\mathrm{AD}}, \mathrm{AM}=4 \mathrm{~cm} ., \mathrm{BC}=6 \mathrm{~cm}$.
1 Prove that : EMBC is a cyclic quadrilateral.
(2) Find : The length of $\overline{\mathrm{AC}}$

[b] In the opposite figure :
$\mathrm{m}(\widehat{\mathrm{AD}})=\mathrm{m}(\widehat{\mathrm{BE}})$
, $\overrightarrow{\mathrm{AD}} \cap \overrightarrow{\mathrm{BE}}=\{\mathrm{C}\}$
Prove that : $\mathrm{AC}=\mathrm{BC}$

19 Souhag Governorate

Answer the following questions: (Calculators are allowed)

1 Choose the correct answer :

$(1$ The rhombus in which the lengths of its diagonals are $12 \mathrm{~cm} ., 18 \mathrm{~cm}$., its area is \qquad cm^{2}.
(a) 108
(b) 216
(c) 54
(d) 30

In the opposite figure :

$\overline{\mathrm{AB}}$ is a diameter of the circle M
, $\mathrm{m}(\angle \mathrm{CAB})=40^{\circ}$
, then $\mathrm{m}(\overparen{\mathrm{AC}})=$
(a) 50°
(b) 40°
(c) 100°
(d) 80°

3 If M,N are two circles touching externally, the lengths of their radii are 3 cm . and 5 cm ., then $\mathrm{MN}=$ \qquad cm .
(a) 2
(b) 4
(c) 8
(d) 15
(4) The number of axes of symmetry of a circle is \qquad
(a) an infinite number.
(b) zero.
(c) single axis.
(d) three axes.
(5) In the opposite figure :

If M is a circle, $\mathrm{m}(\angle \mathrm{BAD})=50^{\circ}$
, then $\mathrm{m}(\angle \mathrm{BCD})=$
(a) 50°
(b) 130°
(c) 260°
(d) 65°

(6) The length of the opposite side of the angle with measure 30° in the right-angled triangle equals the length of the hypotenuse.
(a) $\frac{1}{4}$
(b) $\frac{3}{4}$
(c) $\frac{1}{2}$
(d) $\frac{1}{3}$

2 [a] In the opposite figure :
$\triangle \mathrm{ABC}$ is inscribed in a circle
, $\overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle at $\mathrm{A}, \overline{\mathrm{XY}} / / \overline{\mathrm{BC}}$
Prove that : $\overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the points A, X and Y
[b] In the opposite figure :
If M is a circle
, $\mathrm{m}(\angle \mathrm{MAB})=50^{\circ}$
, find with proof : $1 \mathrm{~m}(\angle \mathrm{ACB})$
$2 \mathrm{~m}(\widehat{\mathrm{ACB}})$

3 [a] In the opposite figure :
The circle $M \cap$ the circle $N=\{A, B\}$
, $\overline{\mathrm{AB}} \cap \overleftrightarrow{\mathrm{MN}}=\{\mathrm{C}\}, \mathrm{D} \in \overleftrightarrow{\mathrm{MN}}$
, $\overline{\mathrm{MX}} \perp \overline{\mathrm{AD}}$ and $\overline{\mathrm{MY}} \perp \overline{\mathrm{BD}}$

Prove that : MX $=\mathrm{MY}$
[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter of the circle M
, $\overline{\mathrm{AB}} / / \overline{\mathrm{CD}}, \mathrm{m}(\widehat{\mathrm{CD}})=80^{\circ}$
and $\mathrm{m}(\widehat{\mathrm{AE}})=100^{\circ}$
Find with proof : $\mathrm{m}(\angle \mathrm{DEB}), \mathrm{m}(\angle \mathrm{AWE})$

4 [a] In the opposite figure :
XYZD is a cyclic quadrilateral
, $\mathrm{W} \in \overrightarrow{\mathrm{YX}}$ where $\mathrm{m}(\angle \mathrm{WXD})=80^{\circ}$
, $\mathrm{m}(\angle \mathrm{Y})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{D})$

Find with proof : $1 \mathrm{~m}(\angle \mathrm{Z}) \quad 2 \mathrm{~m}(\angle \mathrm{D})$
[b] In the opposite figure :
$\overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two chords equal in length in the circle M , D is the midpoint of $\overline{\mathrm{AB}}, \mathrm{E}$ is the midpoint of $\overline{\mathrm{AC}}$, $m(\angle B A C)=60^{\circ}$
1 Find with proof : m ($\angle \mathrm{XMY}$)

(2) Prove that: $\mathrm{XD}=\mathrm{YE}$

Geometry
5 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent-segments to the circle M
, $\overline{\mathrm{AM}} \cap \overline{\mathrm{BC}}=\{\mathrm{D}\}, \mathrm{m}(\angle \mathrm{BAM})=20^{\circ}$
Find with proof : $1 \mathrm{~m}(\angle \mathrm{ACB})$

(2) $\mathrm{m}(\angle \mathrm{BEC})$
[b] In the opposite figure :
ABCD is a quadrilateral, $\mathrm{AB}=\mathrm{BC}=\mathrm{AC}$
, $\mathrm{AD}=\mathrm{DC}, \mathrm{m}(\angle \mathrm{ACD})=30^{\circ}$
Prove that : ABCD is a cyclic quadrilateral.

20 Qena Governorate

Answer the following questions: (Calculators are permitted)
1 Choose the correct answer from those given :
1 A tangent to a circle of diameter length 8 cm . is at a distance of \qquad cm . from its centre.
(a) 3
(b) 4
(c) 6
(d) 8
(2) The sum of measures of the interior angles of the quadrilateral equals
(a) 180°
(b) 270°
(c) 360°
(d) 720°
(3) The inscribed angle opposite to the greatest arc in a circle is \qquad
(a) acute.
(b) right.
(c) obtuse.
(d) reflex.
(4) The number of diagonals of the pentagon is \qquad
(a) 3
(b) 5
(c) 7
(d) 9

5 A circle can be drawn passing through the vertices of a \qquad
(a) rectangle.
(b) trapezoid.
(c) rhombus.
(d) parallelogram.
(6) The area of a square is $100 \mathrm{~cm}^{2}$, then its perimeter is \qquad cm .
(a) 10
(b) 20
(c) 30
(d) 40

2 [a] Find the length and the measure of the arc which is opposite to an inscribed angle of measure 45° in a circle of radius length 7 cm .

$$
\left(\pi \simeq \frac{22}{7}\right)
$$

[b] In the opposite figure :
$\overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two chords equal in length in the circle M
, X, Y are the midpoints of $\overline{\mathrm{AB}}, \overline{\mathrm{AC}}$
respectively, $\mathrm{m}(\angle \mathrm{CAB})=70^{\circ}$
1 Find : m ($\angle \mathrm{DME})$
(2) Prove that : $\mathrm{XD}=\mathrm{YE}$

3 [a] In the opposite figure :

ABC is a triangle drawn in a circle
, $\overline{\mathrm{DE}} / / \overline{\mathrm{BC}}$
Prove that : $\mathrm{m}(\angle \mathrm{DAC})=\mathrm{m}(\angle \mathrm{BAE})$

[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle M
, D is the midpoint of $\overparen{\mathrm{AC}}$
, $\mathrm{m}(\angle \mathrm{ABC})=40^{\circ}$
Find by proof : m ($\angle \mathrm{DAB}$)

4 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle M
, $\mathrm{D} \in \overrightarrow{\mathrm{AB}}, \mathrm{D} \notin \overline{\mathrm{AB}}, \overrightarrow{\mathrm{DE}} \perp \overrightarrow{\mathrm{AB}}$
, $\mathrm{C} \in \overparen{\mathrm{AB}}, \overrightarrow{\mathrm{CB}} \cap \overrightarrow{\mathrm{DE}}=\{\mathrm{E}\}$
Prove that : ACDE is a cyclic quadrilateral.

[b] In the opposite figure :
$\triangle \mathrm{ABC}$ is a right-angled triangle at A

$$
, \mathrm{AC}=3 \mathrm{~cm} ., \mathrm{BC}=6 \mathrm{~cm} ., \mathrm{m}(\angle \mathrm{BAD})=60^{\circ}
$$

Prove that : $\overrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the vertices of $\triangle \mathrm{ABC}$

5 [a] In the opposite figure :
$\overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments to the circle $\mathrm{M}, \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}$

$$
, \mathrm{m}(\angle \mathrm{BMD})=130^{\circ}
$$

1 Prove that : $\overrightarrow{\mathrm{CB}}$ bisects $\angle \mathrm{ACD}$
2 Find : m $(\angle \mathrm{A})$

[b] In the opposite figure :
ABCD is a quadrilateral drawn inside a circle
, $\mathrm{m}(\angle \mathrm{ABE})=100^{\circ}$
, $m(\angle \mathrm{CAD})=40^{\circ}$

Prove that : $\mathrm{m}(\overparen{\mathrm{CD}})=\mathrm{m}(\overparen{\mathrm{AD}})$

21 Luxor Governorate

Answer the following questions :

1 Choose the correct answer :

1 If the two circles M and N are touching internally, the radius length of the circle $\mathrm{N}=3 \mathrm{~cm}$. and $\mathrm{MN}=5 \mathrm{~cm}$., then the radius length of the circle $\mathrm{M}=$ cm .
(a) 2
(b) 8
(c) 5
(d) 9
(2) The number of the common tangents of two distant circles is
(a) 1
(b) 2
(c) 3
(d) 4
(3) If the figure ABCD is a cyclic quadrilateral, $\mathrm{m}(\angle \mathrm{A})=70^{\circ}$, then $\mathrm{m}(\angle \mathrm{C})=$
(a) 70°
(b) 110°
(c) 90°
(d) 180°

4 The area of a triangle $=30 \mathrm{~cm}^{2}$. and one of its heights $=6 \mathrm{~cm}$., then the length of the base which is corresponding to this height $=$ cm .
(a) 30
(b) 6
(c) 10
(d) 12
(5) If the length of the diagonal of a square is 12 cm ., then its area is \qquad cm^{2}.
(a) 72
(b) 144
(c) 12
(d) 24
(6) The sum of the exterior angles of the triangle equals
(a) 120°
(b) 180°
(c) 270°
(d) 360°

2 [a] In the opposite figure :
$\mathrm{MA}=5 \mathrm{~cm} ., \mathrm{AB}=12 \mathrm{~cm}$.
, $\overline{\mathrm{AB}}$ is a tangent-segment to the circle M at A
Find : The length of $\overline{\mathrm{BD}}$

[b] Using your geometric tools, draw $\overline{\mathrm{AB}}$ with length 6 cm ., then draw a circle passing through the two points A and B whose radius length is 5 cm . How many circles can be drawn?

3 [a] In the opposite figure :
M and N are two circles with radii lengths 10 cm . and 6 cm . respectively and they are touching internally at A , $\overline{\mathrm{AB}}$ is a common tangent-segment for both. If the area of $\Delta \mathrm{BMN}=24 \mathrm{~cm}^{2}$, find : the length of $\overline{\mathrm{AB}}$

[b] In the opposite figure :
$\overline{\mathrm{AB}} / / \overline{\mathrm{CD}}$
Prove that: $\mathrm{m}(\angle \mathrm{AED})=\mathrm{m}(\angle \mathrm{BEC})$

4 [a] In the opposite figure :
$\overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two chords equal in length in the circle M , X is the midpoint of $\overline{\mathrm{AB}}, \overrightarrow{\mathrm{MX}}$ intersects the circle at D , $\overrightarrow{\mathrm{MY}} \perp \overline{\mathrm{AC}}$ intersecting it at Y and intersecting the circle at E Prove that : $\mathrm{XD}=\mathrm{YE}, \mathrm{m}(\angle \mathrm{YXB})=\mathrm{m}(\angle \mathrm{XYC})$

[b] In the opposite figure :
$\mathrm{AD}=\mathrm{CD}$
, $\mathrm{m}(\angle \mathrm{ACD})=40^{\circ}$
, $\mathrm{m}(\angle \mathrm{B})=80^{\circ}$
Prove that : ABCD is a cyclic quadrilateral.

5 [a] In the opposite figure:
ABC is a triangle inscribed in a circle
, $\overleftrightarrow{\mathrm{BD}}$ is a tangent to the circle at B
, $\mathrm{X} \in \overline{\mathrm{AB}}, \mathrm{Y} \in \overline{\mathrm{BC}}$, where $\overline{\mathrm{XY}} / / \overleftrightarrow{\mathrm{BD}}$
Prove that : AXYC is a cyclic quadrilateral.

[b] In the opposite figure :
$\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to the circle at B and C
, $\mathrm{m}(\angle \mathrm{A})=70^{\circ}$
, $\mathrm{m}(\angle \mathrm{D})=125^{\circ}$
Prove that: $1 \mathrm{BC}=\mathrm{CE}$
(2) $\overrightarrow{\mathrm{AC}} / / \overline{\mathrm{BE}}$

Answer the following questions: (Calculator is allowed)
1 Choose the correct answer from those given :
1
A square, its side length is 6 cm ., then its surface area is \qquad cm^{2}
(a) 12
(b) 24
(c) 36
(d) 48
(2) ABCD is a cyclic quadrilateral in which $\mathrm{m}(\angle \mathrm{B})=70^{\circ}$, then $\mathrm{m}(\angle \mathrm{D})=$
(a) 50°
(b) 70°
(c) 100°
(d) 110°

3 The measure of the exterior angle of an equilateral triangle at one of its vertices equals \qquad
(a) 120°
(b) 100°
(c) 60°
(d) 30°
(4) Two circles M and N, the lengths of their two radii are 9 cm . and 5 cm . If $\mathrm{MN}=6 \mathrm{~cm}$. , then the two circles are
(a) touching externally.
(b) intersecting.
(c) distant.
(d) touching internally.

5 In the opposite figure :

$\overline{\mathrm{AB}} / / \overline{\mathrm{CD}}, \mathrm{m}(\angle \mathrm{B})=40^{\circ}$.
, then $\mathrm{m}(\overparen{\mathrm{BD}})=$ \qquad
(a) 20°
(b) 40°
(c) 80°
(d) 100°

6 The length of the side which is opposite to the angle with measure 30° in a right-angled triangle is equal to \qquad the length of the hypotenuse.
(a) double
(b) third
(c) quarter
(d) half

2 [a] In the opposite figure :
$\overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two chords equal in length in the circle M , Y is the midpoint of $\overline{\mathrm{AC}}, \overrightarrow{\mathrm{MY}}$ intersects the circle M at $\mathrm{E}, \overrightarrow{\mathrm{MX}} \perp \overrightarrow{\mathrm{AB}}$ intersecting it at X and intersecting the circle M at D Prove that : $\mathrm{YE}=\mathrm{XD}$

[b] In the opposite figure :

$\overrightarrow{\mathrm{CD}}$ is a tangent to the circle M at D , $\mathrm{m}(\angle \mathrm{C})=40^{\circ}$
Find : $m(\widehat{\mathrm{AD}})$ the smaller.

3 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ is a tangent-segment to the circle M at A
, $\mathrm{MA}=6 \mathrm{~cm}$., $\mathrm{AB}=8 \mathrm{~cm}$.
Find : The length of $\overline{\mathrm{DB}}$

[b] In the opposite figure :
$\mathrm{E} \in \overrightarrow{\mathrm{CB}}, \mathrm{m}(\angle \mathrm{ABE})=100^{\circ}$
, $\mathrm{m}(\angle \mathrm{DAC})=40^{\circ}$
Prove that : $m(\overparen{D A})=m(\overparen{D C})$

4 [a] In the opposite figure :
$\overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments to the circle M
, $\mathrm{m}(\angle \mathrm{A})=50^{\circ}$
Find : $m(\angle \mathrm{ABC}), \mathrm{m}(\angle \mathrm{BMC})$

[b] In the opposite figure :
$\overline{\mathrm{AC}} / / \overline{\mathrm{DB}}$
, $\mathrm{m}(\angle \mathrm{AMB})=140^{\circ}$
Find : $m(\angle \mathrm{CAD})$

5 [a] In the opposite figure :
$\overline{\mathrm{AC}} \cap \overline{\mathrm{BD}}=\{\mathrm{E}\}, \overline{\mathrm{AD}} / / \overline{\mathrm{BC}}$
, $\mathrm{m}(\angle \mathrm{DBC})=40^{\circ}$
, $\mathrm{m}(\angle \mathrm{DEC})=80^{\circ}$
Prove that : ABCD is a cyclic quadrilateral.

[b] In the opposite figure :
$\triangle \mathrm{ABC}$ is drawn inscribed in the circle
, $\overrightarrow{\mathrm{AX}}$ is a tangent to the circle,$\overline{\mathrm{DE}} / / \overline{\mathrm{BC}}$
Prove that : $\overrightarrow{\mathrm{AX}}$ is a tangent to the circle passing
 through the points A, D and E

Answer the following questions : (Calculator is allowed)
1 Choose the correct answer from those given :
1 The number of axes of symmetry of an isosceles triangle equals
(a) zero.
(b) 1
(c) 2
(d) 3
(2) A tangent to a circle of diameter length 6 cm . is at a distance of cm . from its centre.
(a) 12
(b) 6
(c) 3
(d) 2

3 If $\tan \left(x+10^{\circ}\right)=\sqrt{3}$ where x is the measure of an acute angle, then $x=$
(a) 30°
(b) 45°
(c) 50°
(d) 60°

4 M and N are two intersecting circles, both their radii lengths are 3 cm . and 5 cm . , then $\mathrm{MN} \in$ \qquad
(a) $] 8, \infty[$
(b) $]-\infty, 2[$
(c) $] 0,2[$
(d) $] 2,8[$

5 The measure of the inscribed angle drawn in a semicircle equals
(a) 45°
(b) 90°
(c) 120°
(d) 180°
(6) In the opposite figure :

If $m(\angle \mathrm{~A})=120^{\circ}$
, then $\mathrm{m}(\angle \mathrm{C})=$
(a) 60°
(b) 90°
(c) 120°
(d) 180°

2 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords equal in length in the circle M , X is the midpoint of $\overline{\mathrm{AB}}, \mathrm{Y}$ is the midpoint of $\overline{\mathrm{AC}}$, $\mathrm{m}(\angle \mathrm{CAB})=70^{\circ}$
1 Calculate : m ($\angle \mathrm{DME}$)

(2) Prove that : XD $=\mathrm{YE}$
[b] In the opposite figure :
ABC is an inscribed triangle inside a circle
, $\overline{\mathrm{DE}} / / \overline{\mathrm{BC}}$
Prove that : $\mathrm{m}(\angle \mathrm{DAC})=\mathrm{m}(\angle \mathrm{BAE})$

3 [a] State two cases of cyclic quadrilateral.
[b] In the opposite figure :
ABCD is a quadrilateral in which $\mathrm{AB}=\mathrm{AD}$
, $\mathrm{m}(\angle \mathrm{ABD})=30^{\circ}, \mathrm{m}(\angle \mathrm{C})=60^{\circ}$
Prove that : ABCD is a cyclic quadrilateral.

4 [a] In the opposite figure :

A circle is drawn touching the sides of the triangle ABC
$\overline{\mathrm{AB}}, \overline{\mathrm{BC}}, \overline{\mathrm{AC}}$ at $\mathrm{D}, \mathrm{E}, \mathrm{F}$ respectively
, $\mathrm{AD}=5 \mathrm{~cm} ., \mathrm{BE}=4 \mathrm{~cm} ., \mathrm{CF}=3 \mathrm{~cm}$.
Find : The perimeter of $\triangle \mathrm{ABC}$

[b] In the opposite figure :
$\overleftrightarrow{\mathrm{CD}}$ is a tangent to the circle at C
$, \overleftrightarrow{\mathrm{CD}} / / \overline{\mathrm{AB}}, \mathrm{m}(\angle \mathrm{AMB})=120^{\circ}$
Prove that : The triangle CAB is an equilateral triangle.

5 [a] In the opposite figure :
$\mathrm{m}(\angle \mathrm{A})=30^{\circ}, \mathrm{m}(\widehat{\mathrm{CH}})=120^{\circ}$
, $\mathrm{m}(\overparen{\mathrm{BC}})=\mathrm{m}(\overparen{\mathrm{DH}})$
1 Find : $\mathrm{m}(\overparen{\mathrm{DB}})$ the minor arc.

(2) Prove that : $\mathrm{AB}=\mathrm{AD}$
[b] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent-segments to the circle at B and $\mathrm{C}, \mathrm{m}(\angle \mathrm{A})=50^{\circ}$
, $\mathrm{m}(\angle \mathrm{CDE})=115^{\circ}$
Prove that : $1 \overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABE}$

$$
\text { (2) } \mathrm{CB}=\mathrm{CE}
$$

24 South Sinai Governorate

Answer the following questions:

1 Choose the correct answer from those given :
1 If the circumference of a circle $=8 \pi \mathrm{~cm}$., then the length of its diameter $=$ \qquad cm .
(a) 2
(b) 4
(c) 8
(d) 16
(2) If the length of the base of a triangle is 16 cm . and its corresponding height is 9 cm . , then its area $=$ \qquad cm^{2}
(a) 25
(b) 72
(c) 36
(d) 144

Geometry

3 The centre of the circumcircle of a triangle is the intersection point of \qquad
(a) the axes of symmetry of its sides.
(b) its heights.
(c) the bisectors of its interior angles.
(d) its medians.
(4) M and N are two circles touching externally, the two radii lengths are 3 cm . and 5 cm . , then $\mathrm{MN}=$ \qquad cm .
(a) 8
(b) 5
(c) 2
(d) 3

5 In the opposite figure :
If $\overline{\mathrm{AB}}$ is a diameter in the circle M
, $\mathrm{m}(\angle \mathrm{B})=50^{\circ}$
, then $m(\angle A)=$ \qquad

(a) 40°
(b) 50°
(c) 90°
(d) 100°
(6) In the opposite figure :

If $m(\angle \mathrm{~A})=X^{\circ}$
, $\mathrm{m}(\angle \mathrm{C})=(3 x)^{\circ}$
, then $x=$ \qquad
(a) 15°
(b) 45°
(c) 95°
(d) 135°

$2 \overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords equal in length a circle M , and $\overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$ intersecting it at D and intersecting the circle at $\mathrm{X}, \overrightarrow{\mathrm{MY}} \perp \overrightarrow{\mathrm{AC}}$ intersecting it at E and intersecting the circle at Y Prove that : DX $=\mathrm{EY}$

3 [a] In the opposite figure :

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{DC}}$ are two chords intersecting at E
, $\mathrm{AE}=\mathrm{DE}$
Prove that : $\overline{\mathrm{AD}} / / \overline{\mathrm{CB}}$

[b] In the opposite figure :
$\mathrm{AD}=\mathrm{CD}$
, $\mathrm{m}(\angle \mathrm{ACD})=30^{\circ}$
, $m(\angle B)=60^{\circ}$
Prove that : The figure ABCD is a cyclic quadrilateral.

4 [a] In the opposite figure :
$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ are two tangents to the circle at B and C , $\mathrm{m}(\angle \mathrm{A})=50^{\circ}$
, $\mathrm{m}(\angle \mathrm{CDE})=115^{\circ}$
Prove that : $\overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABE}$

[b]In the opposite figure :
$\mathrm{E} \in \overrightarrow{\mathrm{CB}}$, such that $\mathrm{m}(\angle \mathrm{ABE})=85^{\circ}$
, $\mathrm{m}(\overparen{\mathrm{BC}})=110^{\circ}$
Find: $m(\angle A D B)$

5 [a]In the opposite figure :
M is a circle, $\overrightarrow{\mathrm{CB}} \cap \overrightarrow{\mathrm{ED}}=\{\mathrm{A}\}$
$, \mathrm{m}(\angle \mathrm{BMD})=40^{\circ}, \mathrm{m}(\angle \mathrm{EMC})=100^{\circ}$

Find: $m(\angle A)$
[b] In the opposite figure :
$\overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle
, $\overleftrightarrow{\mathrm{AD}} / / \overline{\mathrm{XY}}$
Prove that : The figure XYCB is a cyclic quadrilateral.

25 North Sinai Governorate

Answer the following questions :

1 Choose the correct answer from those given :
1 The measure of the inscribed angle drawn in a semicircle is
(a) 180°
(b) 90°
(c) 45°
(d) 60°
(2) The measure of the exterior angle of an equilateral triangle is
(a) 60°
(b) 120°
(c) 180°
(d) 45°
(3) In the opposite figure :

The measure of the central angle $\angle \mathrm{AMC}=80^{\circ}$, then $m(\angle \mathrm{ABC})=$ \qquad
(a) 80°
(b) 160°
(c) 40°
(d) 20°

Geometry

4 The measure of the supplementary angle of the of angle of measure 70° equals
(a) 70°
(b) 20°
(c) 110°
(d) 290°
$5 \mathrm{M}, \mathrm{N}$ are two circles touching externally, the radii lengths of them are $8 \mathrm{~cm} ., 5 \mathrm{~cm}$. , then $\mathrm{MN}=$ \qquad cm .
(a) 3
(b) 13
(c) 8
(d) 5

6 The point of intersection of the medians of the triangle divides each of them by the ratio \qquad from the vertex.
(a) $1: 2$
(b) $2: 3$
(c) $3: 1$
(d) $2: 1$

2 [a] In the opposite figure :
$\dot{\mathrm{BC}}$ is a tangent-segment to the circle M at B
, D is the midpoint of $\overline{\mathrm{AE}}$
, $\mathrm{m}(\angle \mathrm{ACB})=45^{\circ}$
Prove that: $\mathrm{MD}=\mathrm{AD}$
[b] In the opposite figure :

$m(\overparen{E D})=m(\overparen{B C})$
,$m(\overparen{B D})=60^{\circ}$
, $\mathrm{m}(\overparen{\mathrm{EC}})=140^{\circ}$
Find with proof : $1 \mathrm{~m}(\angle \mathrm{~A})$

$$
2 \mathrm{~m}(\overparen{(B C})
$$

3 [a] In the opposite figure :
$\mathrm{X} \in \overrightarrow{\mathrm{BC}}, \mathrm{m}(\angle \mathrm{DCX})=100^{\circ}$
, $\mathrm{m}(\angle \mathrm{ABD})=40^{\circ}$
Prove that : $\mathrm{AB}=\mathrm{AD}$

[b] In the opposite figure :
ABC is a triangle drawn inside a circle M , $\mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{C}), \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}}$
, $\overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}$
Prove that : $\mathrm{MD}=\mathrm{ME}$

4 [a] In the opposite figure :
ABC is a triangle drawn inside a circle , $\overleftrightarrow{\mathrm{AX}}$ is a tangent to the circle at $\mathrm{A}, \overline{\mathrm{DE}} / / \overline{\mathrm{BC}}$
Prove that : $\overleftrightarrow{\mathrm{AX}}$ is a tangent to the circle passing through the vertices of the triangle ADE

[b]In the opposite figure :

A circle M in which
$\mathrm{m}(\angle \mathrm{A})=30^{\circ}$
Prove that : $\Delta \mathrm{MBC}$ is an equilateral triangle.

5 [a]In the opposite figure :
M is the inscribed circle of the triangle $A B C$, it touches its sides $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}, \overline{\mathrm{AC}}$
at $\mathrm{D}, \mathrm{E}, \mathrm{F}$ respectively
, $\mathrm{AD}=5 \mathrm{~cm} ., \mathrm{BE}=4 \mathrm{~cm} ., \mathrm{CF}=3 \mathrm{~cm}$.

Find : The perimeter of the triangle $A B C$
[b] In the opposite figure :
$\overrightarrow{\mathrm{CB}}$ is a tangent to the circle at B
, E is the midpoint of $\overparen{\mathrm{BF}}$
Prove that : ABCD is a cyclic quadrilateral.

26 Red Sea Governorate

Answer the following questions :

1 Choose the correct answer from those given :
ABCD is a cyclic quadrilateral in which, $\mathrm{m}(\angle \mathrm{A})=40^{\circ}$, then $\mathrm{m}(\angle \mathrm{C})=$
(a) 40°
(b) 50°
(c) 320°
(d) 140°

2 The sum of measures of the interior angles of the triangle equals \qquad
(a) 60°
(b) 120°
(c) 180°
(d) 360°
(3) M and N are two intersecting circles, both their radii lengths are 4 cm . and 7 cm . , then $\mathrm{MN} \in$ \qquad
(a) $] 11, \infty[$
(b) $] 3, \infty[$
(c) $] 0,3[$
(d) $] 3,11[$
(4) A circle, its radius length $=8 \mathrm{~cm}$., then its circumference $=$ \qquad cm .
(a) 4π
(b) 16π
(c) 64π
(d) 36π

5 A square, its side length $=5 \mathrm{~cm}$., then its area $=$ \qquad cm^{2}.
(a) 25
(b) 20
(c) 10π
(d) 25π

In the opposite figure :

$\mathrm{m}(\overparen{\mathrm{CE}})=100^{\circ}, \mathrm{m}(\overparen{\mathrm{BD}})=40^{\circ}$
, then $m(\angle A)=$
(a) 50°
(b) 30°
(c) 20°

2 [a] In the opposite figure :
$\overline{\mathrm{AD}}$ is a diameter in the circle M
, $\overline{\mathrm{AB}}$ is a tangent-segment to the circle at A
, E is the midpoint of $\overline{\mathrm{DC}}, \mathrm{m}(\angle \mathrm{B})=50^{\circ}$
Find with proof : m ($\angle \mathrm{AME}$)

[b] In the opposite figure :
$\mathrm{DA}=\mathrm{DC}$
, $\mathrm{m}(\angle \mathrm{ACD})=35^{\circ}, \mathrm{m}(\angle \mathrm{B})=70^{\circ}$
Prove that : ABCD is a cyclic quadrilateral.

3 [a] In the opposite figure :
M is a circle, $\mathrm{AB}=\mathrm{AC}$
, X is the midpoint of $\overline{\mathrm{AB}}$
, Y is the midpoint of $\overline{\mathrm{AC}}$
Prove that : $\mathrm{XD}=\mathrm{YE}$

[b] In the opposite figure :
M is a circle, $\mathrm{m}(\angle \mathrm{AMB})=140^{\circ}$
, $\overline{\mathrm{AC}} / / \overline{\mathrm{DB}}$
Find with proof: $1 \mathrm{~m}(\angle \mathrm{D})$
(2) $\mathrm{m}(\angle \mathrm{DAC})$

4 [a] In the opposite figure :
ABCD is a quadrilateral inscribed in a circle
$, \mathrm{E} \in \overrightarrow{\mathrm{AD}}, \mathrm{m}(\angle \mathrm{CDE})=100^{\circ}$
, $\mathrm{m}(\widehat{\mathrm{AD}})=120^{\circ}$
Find with proof : $1 \mathrm{~m}(\angle \mathrm{ABC})$
(2) $\mathrm{m}(\angle \mathrm{CBD})$

[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle M
, $\mathrm{m}(\angle \mathrm{ABD})=20^{\circ}$
Find with proof : $1 \mathrm{~m}(\angle \mathrm{ACB})$
(2) $\mathrm{m}(\angle \mathrm{BCD})$

5 [a] In the opposite figure :

$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ are two tangents to the circle at B and C
, $\mathrm{m}(\angle \mathrm{A})=50^{\circ}$
Find with proof : $1 \mathrm{~m}(\angle \mathrm{ABC})$

$$
\text { (2) } \mathrm{m}(\angle \mathrm{D})
$$

[b] In the opposite figure :

$\overleftrightarrow{\mathrm{AB}}$ is a tangent to the circle at A
, $\overleftrightarrow{\mathrm{AB}} / / \overrightarrow{\mathrm{YX}}$
Prove that : XCDY is a cyclic quadrilateral.
Preve

27 Matrouh Governorate

Answer the following questions: (Calculators are allowed)

1 Choose the correct answer from those given :
1 The measure of an inscribed angle is \qquad the measure of the central angle, subtended by the same arc.
(a) $\frac{1}{4}$
(b) $\frac{1}{2}$
(c) $\frac{1}{3}$
(d) $\frac{1}{5}$
(2) The circumference of a circle equals length unit.
(a) πr^{2}
(b) πr
(c) $2 \pi r$
(d) $2 \pi r^{2}$
(3) The number of symmetry axes of a circle equals
(a) 1
(b) 2
(c) 4
(d) an infinite number.
(4) ABCD is a cyclic quadrilateral, which has $\mathrm{m}(\angle \mathrm{A})=60^{\circ}$, then $\mathrm{m}(\angle \mathrm{C})=$ \qquad
(a) 30°
(b) 60°
(c) 90°
(d) 120°
(5) The area of a rhombus with a diagonal lengths of $6 \mathrm{~cm} ., 8 \mathrm{~cm}$. equals
(a) 48 cm .
(b) $48 \mathrm{~cm}^{2}$
(c) 24 cm .
(d) $24 \mathrm{~cm}^{2}$

6 If the two circles M, N are touching externally, the radius length of one of them is $5 \mathrm{~cm} ., \mathrm{MN}=9 \mathrm{~cm}$., then the radius length of the other circle equals
(a) 3 cm .
(b) 4 cm .
(c) 7 cm .
(d) 14 cm .

2 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ is a chord in the circle M with length 10 cm .

$$
, \mathrm{m}(\angle \mathrm{AMB})=90^{\circ}
$$

Find: $1 \mathrm{~m}(\angle \mathrm{~A})$
(2) The length of $\overline{\mathrm{MA}}$

Geometry

[b] In the opposite figure :

ABC is a triangle in which $\mathrm{AB}=\mathrm{AC}, \overrightarrow{\mathrm{BX}}$ bisects $\angle \mathrm{ABC}$ and intersects $\overline{\mathrm{AC}}$ at $\mathrm{X}, \overrightarrow{\mathrm{CY}}$ bisects $\angle \mathrm{ACB}$ and intersects $\overline{\mathrm{AB}}$ at Y Prove that : 1 BCXY is a cyclic quadrilateral.
(2) $\overleftrightarrow{\mathrm{XY}} / / \overleftrightarrow{\mathrm{BC}}$

3 . [a] In the opposite figure :
ABC is an inscribed triangle inside a circle
, $\overline{\mathrm{DE}} / / \overline{\mathrm{BC}}$
Prove that : $\mathrm{m}(\angle \mathrm{DAC})=\mathrm{m}(\angle \mathrm{BAE})$
[b] In the opposite figure :

ABC is a triangle inscribed in a circle
, $\overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle at A
, $X \in \overline{\mathrm{AB}}$
, $\mathrm{Y} \in \overline{\mathrm{AC}}$ where $\overline{\mathrm{XY}} / / \overline{\mathrm{BC}}$

Prove that : $\overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the points A, X and Y
4 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent-segments to the circle at B and $\mathrm{C}, \mathrm{m}(\angle \mathrm{A})=50^{\circ}, \mathrm{m}(\angle \mathrm{CDE})=115^{\circ}$
Prove that : $1 \overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABE} \quad 2 \mathrm{CB}=\mathrm{CE}$

[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle M
, $\overleftrightarrow{\mathrm{BC}}$ is a tangent at $\mathrm{B}, \mathrm{m}(\angle \mathrm{DBC})=50^{\circ}$
Find : m (\angle AMD)

5 [a] $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords equal in length in the circle M, X and Y are the midpoints of $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ respectively, $\mathrm{m}(\angle \mathrm{MXY})=30^{\circ}$
Prove that: 1 MXY is an isosceles triangle. 2 AXY is an equilateral triangle.
[b] In the opposite figure :
$\overline{\mathrm{LE}}$ is a diameter of the circle
, $\mathrm{m}(\angle \mathrm{MNL})=110^{\circ}$
Find : m (\angle MLE)

Answers of governorates' examinations of geometry

1 Cairo

1
(1) c 2 d (3) 4 c (5d 6 a
2.
[a] In $\triangle \mathrm{AHD}: \because \mathrm{HA}=\mathrm{HD}$
$\therefore \mathrm{m}(\angle \mathrm{HAD})=\mathrm{m}(\angle \mathrm{HDA})=35^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{H})=180^{\circ}-\left(35^{\circ}+35^{\circ}\right)=110^{\circ}$ (First req.)
$\therefore \mathrm{m}(\angle \mathrm{H})=\mathrm{m}(\angle \mathrm{ABC})=110^{\circ}$
$\therefore \mathrm{ABDH}$ is a cyclic quadrilateral. (Second req.)
[b] $\mathrm{m}(\angle \mathrm{ABD})=180^{\circ}-140^{\circ}=40^{\circ}$
(First req.)
, $\because \overleftrightarrow{\mathrm{AC}}$ is a tangent
$\therefore \mathrm{m}(\angle \mathrm{H})$ (inscribed) $=\mathrm{m}(\angle \mathrm{ABD})$ (tangency)
$\therefore \mathrm{m}(\angle \mathrm{H})=40^{\circ}$
(Second req.)

3

[a] $\because \overline{\mathrm{XY}}$ is a diameter.
$\therefore \mathrm{m}(\angle \mathrm{XZY})=90^{\circ}$
$\because \mathrm{m}(\angle \mathrm{YZL})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{YML})$
(inscribed and central angles subtended by $\overparen{\mathrm{YL}}$)
$\therefore \mathrm{m}(\angle \mathrm{YZL})=\frac{1}{2} \times 60^{\circ}=30^{\circ} \quad$ (Second req.)
[b]

4
[a] $\because \mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle \mathrm{DAC})=50^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BAD})=2 \times 50^{\circ}=100^{\circ}$
, $\because \mathrm{ABCD}$ is a cyclic quadrilateral.
$\therefore \mathrm{m}(\angle \mathrm{BCD})=180^{\circ}-100^{\circ}=80^{\circ}$
(The req.)
[b] $\because \overline{\mathrm{AC}}$ is the common chord.
, $\overleftrightarrow{\mathrm{MN}}$ is the line of centres. $\quad \therefore \overleftrightarrow{\mathrm{MN}} \perp \overrightarrow{\mathrm{AC}}$
, $\because \mathrm{MX}=\mathrm{MO}$ (two radii of circle M)
, $\mathrm{HX}=\mathrm{DO}$
$\therefore \mathrm{MH}=\mathrm{MD}$
$, \because \overrightarrow{\mathrm{MH}} \perp \overrightarrow{\mathrm{AB}} \quad, \overline{\mathrm{MD}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{AB}=\mathrm{AC}$
(Q.E.D.)

5
[a] $\mathrm{m}(\angle \mathrm{AMB})=\mathrm{m}(\angle \mathrm{CMD})=40^{\circ}$
(V.O.A)
(First req.)
,$\because \mathrm{m}(\angle \mathrm{AMB})=40^{\circ} \quad \therefore \mathrm{m}(\widehat{\mathrm{AB}})=40^{\circ}$
,$\because \overline{\mathrm{AD}} / / \overline{\mathrm{BH}}$
$\therefore \mathrm{m}(\overparen{\mathrm{DH}})=\mathrm{m}(\widehat{\mathrm{AB}})=40^{\circ} \quad$ (Second req.)
[b] $\because \overline{\mathrm{AX}}, \overline{\mathrm{AY}}$ are two tangent-segments.
$\therefore \mathrm{AY}=\mathrm{AX}=6 \mathrm{~cm}$.
(First req.)
,$\because \overline{\mathrm{AX}}$ is a tangent-segment $\quad \therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AX}}$
$\therefore \mathrm{m}(\angle \mathrm{AXM})=90^{\circ}$
(Second req.)
In $\triangle \mathrm{AXM}: \therefore \mathrm{m}(\angle \mathrm{XAM})=180^{\circ}-\left(90^{\circ}+65^{\circ}\right)$

$$
=25^{\circ}
$$

, $\because \overrightarrow{\mathrm{AM}}$ bisects $\angle \mathrm{XAY}$
$\therefore \mathrm{m}(\angle \mathrm{XAY})=2 \times 25^{\circ}=50^{\circ}$
(Third req.)

2 Ciza

(1) c (2) 3 a 4 d (5) 6 d

2
[a] In $\triangle \mathrm{AMC}: \because \mathrm{m}(\angle \mathrm{ACM})=90^{\circ}$
$\therefore(\mathrm{AC})^{2}=(13)^{2}-(5)^{2}=144$
$\therefore \mathrm{AC}=\sqrt{144}=12 \mathrm{~cm}$.
,$\because \overline{\mathrm{MC}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{C}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \mathrm{AB}=2 \mathrm{AC}=2 \times 12=24 \mathrm{~cm}$.
, $\because M D=M A=r=13 \mathrm{~cm}$.
$\therefore C D=13-5=8 \mathrm{~cm}$.
(The req.)
[b] $\because \overline{\mathrm{AC}} / / \overline{\mathrm{MD}}, \stackrel{\mathrm{AM}}{\mathrm{A}}$ is a transversal.
$\therefore \mathrm{m}(\angle \mathrm{AMD})=\mathrm{m}(\angle \mathrm{CAB})=40^{\circ}$
(alternate angles)
,$\because m(\angle \mathrm{ABD})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{AMD})$
(inscribed and central angles subtended by $\overparen{A D}$)
$\therefore \mathrm{m}(\angle \mathrm{ABD})=\frac{1}{2} \times 40^{\circ}=20^{\circ}$
(The req.)
3
[a] $\because \mathrm{m}(\angle \mathrm{BAD})=180^{\circ}-86^{\circ}=94^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BAD})=\mathrm{m}(\angle \mathrm{DCE})=94^{\circ}$
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral.
[b] $\because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments
$\therefore \mathrm{AB}=\mathrm{AC}$

Geometry

$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=\frac{180^{\circ}-50^{\circ}}{2}=65^{\circ}$
(First req.)
,$\because \overline{\mathrm{MC}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{ACM})=90^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{MCB})=90^{\circ}-65^{\circ}=25^{\circ} \quad$ (Second req.)
,$\because \overline{\mathrm{MB}} \perp \overline{\mathrm{AB}}$
$\therefore \mathrm{m}(\angle \mathrm{ABM})=90^{\circ}$
From the quadrilateral ABMC :
$\therefore \mathrm{m}(\angle \mathrm{CMB})=360^{\circ}-\left(90^{\circ}+90^{\circ}+50^{\circ}\right)=130^{\circ}$
(Third req.)

4

[a] In $\triangle \mathrm{ABC}: \because \mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{C})$
$\therefore \mathrm{AB}=\mathrm{AC}$
, $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}} \quad, \because \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{MX}=\mathrm{MY}$
(Q.E.D.)
[b] $\because \mathrm{m}(\angle \mathrm{A})=\frac{1}{2}[\mathrm{~m}(\overparen{\mathrm{CD}})-\mathrm{m}(\overparen{(\mathrm{BH}})]$
$\therefore 28^{\circ}=\frac{1}{2}\left[\mathrm{~m}(\overparen{\mathrm{CD}})-30^{\circ}\right]$
$\therefore 56^{\circ}=\mathrm{m}(\overparen{\mathrm{CD}})-30^{\circ}$
$\therefore \mathrm{m}(\overparen{\mathrm{CD}})=56^{\circ}+30^{\circ}=86^{\circ}$
(The req.)
5
[a] $\because \mathrm{ABCD}$ is a cyclic quadrilateral.
$\therefore m(\angle \mathrm{BAD})=180^{\circ}-70^{\circ}=110^{\circ}$
In $\begin{aligned} \triangle \mathrm{ABD}: \therefore \mathrm{m}(\angle \mathrm{ABD}) & =180^{\circ}-\left(110^{\circ}+30^{\circ}\right) \\ & =40^{\circ} \quad \text { (The req.) }\end{aligned}$
[b] $\because \overrightarrow{\mathrm{AC}}, \overrightarrow{\mathrm{AB}}$ are two tangents $\quad \therefore \mathrm{AC}=\mathrm{AB}$
In $\triangle A B C$:
$\therefore \mathrm{m}(\angle \mathrm{ACB})=\mathrm{m}(\angle \mathrm{ABC})=\frac{180^{\circ}-40^{\circ}}{2}=70^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CHB})$ (inscribed)
$=\mathrm{m}(\angle \mathrm{ACB})$ (tangency) $=70^{\circ} \quad$ (First req.)
, $\because \stackrel{\mathrm{AC}}{\mathrm{AC}} / / \overline{\mathrm{BH}}, \overleftrightarrow{\mathrm{BC}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{CBH})=\mathrm{m}(\angle \mathrm{ACB})=70^{\circ}$
(alternate angles)
In $\begin{aligned} \triangle \mathrm{BCH}: \therefore \mathrm{m}(\angle \mathrm{BCH}) & =180^{\circ}-\left(70^{\circ}+70^{\circ}\right) \\ & =40^{\circ}\end{aligned}$
$\therefore \mathrm{m}(\widehat{\mathrm{BH}})=2 \mathrm{~m}(\angle \mathrm{BCH})=2 \times 40^{\circ}=80^{\circ}$
(Second req.)

3 Alexandria

$1 \mathrm{~d} \quad 2 \mathrm{~d} \quad 3 \mathrm{~b} \quad 4 \mathrm{c} \quad 5 \mathrm{a} \quad 6 \mathrm{c}$

2
[a] $\because \overline{\mathrm{AB}}$ is a tangent-segment to the circle M
$\therefore \overline{\mathrm{MA}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{MAB})=90^{\circ}$
, $\because \mathrm{H}$ is the midpoint of $\overline{\mathrm{CD}}$
$\therefore \overline{\mathrm{MH}} \perp \overline{\mathrm{CD}} \quad \therefore \mathrm{m}(\angle \mathrm{MHB})=90^{\circ}$
From the quadrilateral ABHM :
$\therefore \mathrm{m}(\angle \mathrm{AMH})=360^{\circ}-\left(90^{\circ}+90^{\circ}+50^{\circ}\right)=130^{\circ}$
(The req.)
[b] $\mathrm{m}(\angle \mathrm{A})=\frac{1}{2}[\mathrm{~m}(\overparen{\mathrm{CH}})-\mathrm{m}(\overparen{(\mathrm{BD}})]$

$$
=\frac{1}{2}\left(100^{\circ}-30^{\circ}\right)=35^{\circ} \quad \text { (The req.) }
$$

3
[a] In $\triangle \mathrm{ABM}$:
$\because M A=M B=r$
$\therefore \mathrm{m}(\angle \mathrm{MAB})=\mathrm{m}(\angle \mathrm{MBA})=50^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{AMB})=180^{\circ}-2 \times 50^{\circ}=80^{\circ}$
,$\because \mathrm{m}(\angle \mathrm{ACB})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{AMB})$
(inscribed and central angles subtended by $\overparen{\mathrm{AB}}$)
$\therefore \mathrm{m}(\angle \mathrm{ACB})=\frac{1}{2} \times 80^{\circ}=40^{\circ}$
,$\because \mathrm{m}(\overparen{(A C})=m(\overparen{B C}) \quad \therefore A C=B C$
In $\triangle \mathrm{ABC}$:
$\therefore \mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle \mathrm{ABC})=\frac{180^{\circ}-40^{\circ}}{2}=70^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CAM})=70^{\circ}-50^{\circ}=20^{\circ} \quad$ (The req.)
[b] $\because A B=C D$ $, \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{CD}}$
$\therefore M X=M Y \quad, \because M H=M E=r$
$\therefore \mathrm{XH}=\mathrm{EY}$
(Q.E.D.)

4
[a] $\because \overline{\mathrm{AB}} / / \overline{\mathrm{CD}} \quad \therefore \mathrm{m}(\widehat{\mathrm{AC}})=\mathrm{m}(\widehat{\mathrm{BD}})$
$\therefore \mathrm{m}(\angle \mathrm{AEC})=\mathrm{m}(\angle \mathrm{DEB})$
Adding $\mathrm{m}(\angle \mathrm{CED})$ to both sides :
$\therefore \mathrm{m}(\angle \mathrm{AED})=\mathrm{m}(\angle \mathrm{CEB})$
(Q.E.D.)
[b] In $\triangle L Y Z: ~ \because Z L=Z Y$
$\therefore \mathrm{m}(\angle \mathrm{ZYL})=\mathrm{m}(\angle \mathrm{ZLY})=40^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{LZY})=180^{\circ}-2 \times 40^{\circ}=100^{\circ}$
,$\because \mathrm{m}(\angle \mathrm{LZY})+\mathrm{m}(\angle \mathrm{LXY})=100^{\circ}+80^{\circ}=180^{\circ}$
$\therefore \mathrm{XYZL}$ is a cyclic quadrilateral.
(Q.E.D.)

5

[a] $\because \overline{\mathrm{AD}}, \overline{\mathrm{AE}}$ are two tangent-segments to the circle
$\therefore \mathrm{AD}=\mathrm{AE}=5 \mathrm{~cm}$.
$, \because \overline{\mathrm{BD}}, \overline{\mathrm{BH}}$ are two tangent-segments to the circle
$\therefore \mathrm{BD}=\mathrm{BH}=4 \mathrm{~cm}$.
$, \because \overline{\mathrm{CH}}, \overline{\mathrm{CE}}$ are two tangent-segments to the circle
$\therefore \mathrm{CH}=\mathrm{CE}=3 \mathrm{~cm}$.
\therefore The perimeter of $\triangle \mathrm{ABC}=5+5+4+4+3+3$
$=24 \mathrm{~cm}$. (The req.)
[b] $\because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents. $\quad \therefore \mathrm{AB}=\mathrm{AC}$
In $\triangle \mathrm{ABC}$:
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=\frac{180^{\circ}-50^{\circ}}{2}=65^{\circ}$
,$\because \mathrm{BCDH}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{CBH})=180^{\circ}-115^{\circ}=65^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{CBH})=65^{\circ}$
$\therefore \overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABH}$ (Q.E.D.)

4 El-Kalyoubia

1
1d
(2) c
(3) b
(4) c . d
6 d

2
[a] $\because \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{ADM})=90^{\circ}$
,\because E is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{AEM})=90^{\circ}$
From the quadrilateral MDAE :
$\therefore \mathrm{m}(\angle \mathrm{DME})=360^{\circ}-\left(90^{\circ}+90^{\circ}+120^{\circ}\right)=60^{\circ}$
,$\because \mathrm{m}(\angle \mathrm{YMX})=\mathrm{m}(\angle \mathrm{DME})=60^{\circ} \quad$ (V.O.A)
, $M Y=M X=r$
$\therefore \triangle \mathrm{MXY}$ is an equilateral triangle. (Q.E.D.)
[b] In $\triangle A B M$:
$\because M A=M B=r$
$\therefore \mathrm{m}(\angle \mathrm{MAB})=\mathrm{m}(\angle \mathrm{MBA})=50^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{AMB})=180^{\circ}-2 \times 50^{\circ}=80^{\circ}$
,$\because m(\angle A C B)=\frac{1}{2} m(\angle A M B)$
(inscribed and central angles subtended by $\overparen{\mathrm{AB}}$)
$\therefore \mathrm{m}(\angle \mathrm{ACB})=\frac{1}{2} \times 80^{\circ}=40^{\circ} \quad$ (The req.)

3

[a] In the greater circle :
$\because \overline{\mathrm{ME}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{E}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \mathrm{AE}=\mathrm{BE}$
In the smaller circle
,$\because \overline{\mathrm{ME}} \perp \overline{\mathrm{CD}} \quad \therefore \mathrm{E}$ is the midpoint of $\overline{\mathrm{CD}}$
$\therefore \mathrm{CE}=\mathrm{DE}$
Subtracting (2) from (1) :
$\therefore \mathrm{AC}=\mathrm{BD}$
[b] $\because \mathrm{m}(\angle \mathrm{A})=\frac{1}{2}[\mathrm{~m} \overparen{(\mathrm{EC})}-\mathrm{m}(\overparen{\mathrm{BD}})]$
$\therefore 30^{\circ}=\frac{1}{2}\left[\mathrm{~m}(\overparen{\mathrm{EC}})-44^{\circ}\right]$
$\therefore 60^{\circ}=\mathrm{m}(\overparen{\mathrm{EC}})-44^{\circ}$
$\therefore \mathrm{m}(\overparen{\mathrm{EC}})=60^{\circ}+44^{\circ}=104^{\circ}$
(The req.)
4
[a] In $\triangle A B C: \because A B=A C$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})$
$\therefore \frac{1}{2} \mathrm{~m}(\angle \mathrm{ABC})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{ACB})$
$\therefore \mathrm{m}(\angle \mathrm{ABX})=\mathrm{m}(\angle \mathrm{ACY})$
and they are drawn on $\overline{X Y}$ and on one side of it
$\therefore \mathrm{BCXY}$ is a cyclic quadrilateral.
(Q.E.D.)
[b] $\because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangent to the smaller circle $\therefore \mathrm{AB}=\mathrm{AC}=10 \mathrm{~cm}$.
$, \because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AD}}$ are two tangents to the greater circle $\therefore \mathrm{AB}=\mathrm{AD}=10 \mathrm{~cm}$.
$\therefore x+7=10 \quad \therefore x=3 \mathrm{~cm}$.
(The req.)
5
[a] $\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{BAD})=180^{\circ}-70^{\circ}=110^{\circ}$
In $\triangle \mathrm{ABD}: \therefore \mathrm{m}(\angle \mathrm{ABD})=180^{\circ}-\left(110^{\circ}+30^{\circ}\right)$
$=40^{\circ} \quad$ (The req.)
[b] In $\triangle \mathrm{ABC}: \because \mathrm{AC}=\mathrm{BC}$
$\therefore \mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle \mathrm{ABC})=65^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CAD})=130^{\circ}-65^{\circ}=65^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{CAD})=65^{\circ}$
$\therefore \overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the vertices of $\triangle \mathrm{ABC}$
(Q.E.D.)

5 ELSharkia

1
(1) b a 3 d 4a 5 a (6)

2
[a] $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$
,$\because \overline{\mathrm{MY}} \perp \overline{\mathrm{CD}}$
, $\mathrm{AB}=\mathrm{CD}$
$\therefore \mathrm{MX}=\mathrm{MY}$
, $\because \mathrm{ME}=\mathrm{MF}=\mathrm{r}$
By subtracting: $\therefore \mathrm{XE}=\mathrm{YF}$
(Q.E.D.)
[b] $\because \mathrm{m}(\angle \mathrm{BDC})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{BMC})$
(inscribed and central angles subtended by $\overparen{B C}$)
$\therefore \mathrm{m}(\angle \mathrm{BDC})=\frac{1}{2} \times 120^{\circ}=60^{\circ}$
$, \because \overline{\mathrm{AB}} / / \overline{\mathrm{DC}}, \overleftrightarrow{\mathrm{BD}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{ABD})=\mathrm{m}(\angle \mathrm{BDC})=60^{\circ}$
(alternate angles) (1)
$, \because \overline{\mathrm{AB}}, \overline{\mathrm{AD}}$ are two tangent-segments.
$\therefore A B=A D$
From (1) and (2) : $\therefore \triangle \mathrm{ABD}$ is an equilateral triangle
(Q.E.D.)

3
[a] $\because \overline{\mathrm{AB}}$ is a diameter. $\therefore \mathrm{m}(\angle \mathrm{ACB})=90^{\circ}$
,$\because \mathrm{m}(\angle \mathrm{ACE})=\mathrm{m}(\angle \mathrm{ADE})=90^{\circ}$
and they are drawn on $\overline{\mathrm{AE}}$ and on one side of it
$\therefore \mathrm{ACDE}$ is a cyclic quadrilateral (First req.)
$\therefore \mathrm{m}(\angle \mathrm{ACD})+\mathrm{m}(\angle \mathrm{AED})=180^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ACD})=180^{\circ}-70^{\circ}=110^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{DCE})=110^{\circ}-90^{\circ}=20^{\circ} \quad$ (Second req.)
[b] $\because \mathrm{Y}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{AYM})=90^{\circ}$
,$\because \overrightarrow{\mathrm{MX}} \perp \overrightarrow{\mathrm{AB}}$
$\therefore \mathrm{m}(\angle \mathrm{AXM})=90^{\circ}$

\therefore From the quadrilateral AXMY:
$\mathrm{m}(\angle \mathrm{XMY})=360^{\circ}-\left(90^{\circ}+90^{\circ}+72^{\circ}\right)=108^{\circ}$
(First req.)
, $\because \overrightarrow{\mathrm{MX}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
$\because B X=\frac{1}{2} A B=8 \mathrm{~cm}$.
In $\triangle B X M: \because m(\angle B X M)=90^{\circ}$
$\therefore(M X)^{2}=(B M)^{2}-(B X)^{2}=(10)^{2}-(8)^{2}=36$
$\therefore M X=6 \mathrm{~cm}$.
$\therefore \mathrm{XE}=10-6=4 \mathrm{~cm}$.
(Second req.)

4

[a] $\because \mathrm{m}(\angle \mathrm{AEC})=\frac{1}{2}[\mathrm{~m}(\overparen{\mathrm{AC}})-\mathrm{m}(\overparen{\mathrm{BD}})]$
$\therefore 40^{\circ}=\frac{1}{2}\left[100^{\circ}-\mathrm{m}(\widehat{\mathrm{BD}})\right]$
$\therefore 80^{\circ}=100^{\circ}-\mathrm{m}(\widehat{\mathrm{BD}})$
$\therefore \mathrm{m}(\widehat{\mathrm{BD}})=100^{\circ}-80^{\circ}=20^{\circ}$
, $\because \overline{\mathrm{AB}}$ is a dimaeter $\quad \therefore \mathrm{m}(\widehat{\mathrm{AB}})=180^{\circ}$
$\therefore \mathrm{m}(\overparen{\mathrm{CD}})=180^{\circ}-\left(100^{\circ}+20^{\circ}\right)=60^{\circ}$ (The req.)
[b] $\because \overline{\mathrm{AB}}$ is a diameter $\quad \therefore \mathrm{m}(\overparen{\mathrm{AB}})=180^{\circ}$
$\therefore \mathrm{m}(\widehat{\mathrm{CAB}})=180^{\circ}+50^{\circ}=230^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CDB})=\frac{1}{2} \mathrm{~m}(\widehat{\mathrm{CAB}})=\frac{1}{2} \times 230^{\circ}=115^{\circ}$
(The req.)
5
[a] $\because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents
$\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{m}(\angle 1)=\mathrm{m}(\angle 2)$
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-2 \mathrm{~m}(\angle 1)$

In $\triangle \mathrm{BCD}: \because C B=C D$
$\therefore \mathrm{m}(\angle 4)=\mathrm{m}(\angle 3)$
$\therefore \mathrm{m}(\angle \mathrm{BCD})=180^{\circ}-2 \mathrm{~m}(\angle 3)$
,$\because \mathrm{m}(\angle 3)$ (inscribed) $=\mathrm{m}(\angle 1)$ (tangency)
From (1), (2) and (3) :
$\therefore \mathrm{m}(\angle \mathrm{A})=\mathrm{m}(\angle \mathrm{BCD})$
$\therefore \overrightarrow{\mathrm{CD}}$ is a tangent to the circle passing through the vertices of $\triangle A B C$
(Q.E.D.)
[b] $\because \mathrm{E}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{MED})=90^{\circ}$
,$\because \overline{\mathrm{BD}}$ is a tangent-segment $\therefore \overline{\mathrm{MB}} \perp \overline{\mathrm{BD}}$
$\therefore \mathrm{m}(\angle \mathrm{MBD})=90^{\circ}$
,$\because \mathrm{m}(\angle \mathrm{MED})+\mathrm{m}(\angle \mathrm{MBD})=90^{\circ}+90^{\circ}=180^{\circ}$
\therefore MEDB is a cyclic quadrilateral.
(Q.E.D.)

6. E-Monofia

1 c (2) $\quad 3 \mathrm{~d} \quad 4 \mathrm{~d} \quad 5 \mathrm{~b} \quad 6 \mathrm{~d}$

2
[a] $\because \mathrm{C}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \mathrm{AC}=\frac{1}{2} \mathrm{AB}=12 \mathrm{~cm}$.
,$\overline{\mathrm{MC}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{ACM})=90^{\circ}$
\therefore In $\triangle \mathrm{ACM}:(\mathrm{MC})^{2}=(\mathrm{MA})^{2}-(\mathrm{AC})^{2}$

$$
=(13)^{2}-(12)^{2}=25
$$

$\therefore \mathrm{MC}=\sqrt{25}=5 \mathrm{~cm}$.
$\therefore C D=13-5=8 \mathrm{~cm}$.
(The req.)
[b] In $\triangle \mathrm{ABD}: \because \mathrm{AB}=\mathrm{AD}$
$\therefore \mathrm{m}(\angle \mathrm{ABD})=\mathrm{m}(\angle \mathrm{ADB})=30^{\circ}$
$\therefore m(\angle \mathrm{BAD})=180^{\circ}-\left(30^{\circ}+30^{\circ}\right)=120^{\circ}$
, $\because m(\angle \mathrm{BAD})+\mathrm{m}(\angle \mathrm{C})=120^{\circ}+60^{\circ}=180^{\circ}$
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral.
(Q.E.D.)

3
[a] In $\triangle \mathrm{ABC}: \because \mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{C})=50^{\circ}$
$\therefore \mathrm{AB}=\mathrm{AC} \quad, \because \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{MX}=\mathrm{MY}$
(First req.)
,$\because \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \mathrm{AC}=\mathrm{AB}=2 \times 3=6 \mathrm{~cm}$.
(Second req.)
[b] $\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-120^{\circ}=60^{\circ}$
(First req.)
,$\because \overline{\mathrm{AB}}$ is a diameter. $\therefore \mathrm{m}(\angle \mathrm{ADB})=90^{\circ}$
\therefore In $\triangle \mathrm{ADB}: \mathrm{m}(\angle \mathrm{ABD})=180^{\circ}-\left(90^{\circ}+60^{\circ}\right)$ $=30^{\circ} \quad$ (Second req.)

4
[a] $\because \overrightarrow{\mathrm{AB}}$ is a tangent to the circle
$\therefore \overline{\mathrm{MB}} \perp \overrightarrow{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{ABM})=90^{\circ}$
\therefore In $\triangle \mathrm{ABM}: \mathrm{m}(\angle \mathrm{AMB})=180^{\circ}-\left(90^{\circ}+40^{\circ}\right)$ $=50^{\circ}$
, $\because \mathrm{m}(\angle \mathrm{BDC})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{BMC})$
(inscribed and central angles subtended by $\overparen{B C}$)
$\therefore \mathrm{m}(\angle \mathrm{BDC})=\frac{1}{2} \times 50^{\circ}=25^{\circ} \quad$ (The req.)
[b] $\because \overleftrightarrow{\mathrm{AX}}$ is a common tangent for two circles
$\therefore \mathrm{m}(\angle \mathrm{BDA})$ (inscribed) $=\mathrm{m}(\angle \mathrm{BAX})$ (tangency)
, $\mathrm{m}(\angle \mathrm{CEA})$ (inscribed) $=\mathrm{m}(\angle \mathrm{CAX})$ (tangency)
$\therefore \mathrm{m}(\angle \mathrm{BDA})=\mathrm{m}(\angle \mathrm{CEA})$
and they are corresponding angles
$\therefore \overline{\mathrm{BD}} / / \overline{\mathrm{CE}}$
(Q.E.D.)

5
[a] $\mathrm{m}(\overparen{\mathrm{AD}})=2 \mathrm{~m}(\angle \mathrm{ACD})=2 \times 26^{\circ}=52^{\circ}$
(First req)
,$\left.\because \mathrm{m}(\angle \mathrm{BEC})=\frac{1}{2}[\mathrm{~m} \overparen{(\mathrm{BC}})+\mathrm{m}(\overparen{\mathrm{AD}})\right]$
$\therefore 92^{\circ}=\frac{1}{2}\left[\mathrm{~m}(\overparen{\mathrm{BC}})+52^{\circ}\right]$
$\therefore 184^{\circ}=\mathrm{m}(\overparen{B C})+52^{\circ}$
$\therefore \mathrm{m}(\overparen{B C})=184^{\circ}-52^{\circ}=132^{\circ} \quad$ (Second req.)
[b] $\ln \triangle \mathrm{ABC}$:
$\because A C=B C$
$\therefore \mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{BAC})(1)$

$\because \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}, \overleftrightarrow{\mathrm{AC}}$ is a transversal to them
$\therefore \mathrm{m}(\angle \mathrm{DCA})=\mathrm{m}(\angle \mathrm{BAC})$ (alternate angles) (2) From (1) and (2): $\therefore \mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{DCA})$
$\therefore \overrightarrow{\mathrm{CD}}$ is a tangent to the circle passing thourgh the vertices of $\triangle \mathrm{ABC}$
(Q.E.D.)

7 E-Gharbia

4 b (2) 3 a (4) 5 c (6)
2
[a] $\because \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{CD}}$
, $M X=M Y \quad \therefore A B=C D$
,$\because \overline{\mathrm{MY}} \perp \overline{\mathrm{CD}} \quad \therefore \mathrm{Y}$ is the midpoint of CD
$\therefore \mathrm{AB}=\mathrm{CD}=2 \times 7=14 \mathrm{~cm}$. (The req.)
[b] $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{AXM})=90^{\circ}$
,$\because \overline{\mathrm{BY}}$ is a tangent-segment
$\therefore \overline{\mathrm{MB}} \perp \overline{\mathrm{BY}} \quad \therefore \mathrm{m}(\angle \mathrm{MBY})=90^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{AXY})=\mathrm{m}(\angle \mathrm{ABY})=90^{\circ}$
and they are drawn on $\overline{\mathrm{AY}}$ and on one side of it
$\therefore \mathrm{AXBY}$ is a cyclic quadrilateral.
(Q.E.D.)

3

[a] $\because \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}$
$\therefore \mathrm{m}(\overparen{\mathrm{BD}})=\mathrm{m}(\overparen{\mathrm{AC}})=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BED})=\frac{1}{2} \mathrm{~m}(\overparen{\mathrm{BD}})=\frac{1}{2} \times 30^{\circ}=15^{\circ}$
(The req.)

Geometry

[b] $\because \overleftrightarrow{\mathrm{DY}}$ is a tangent to the circle
$\therefore \mathrm{m}(\angle \mathrm{ACB})$ (inscribed) $=\mathrm{m}(\angle \mathrm{BAD})$ (tangency)
,$\because m(\angle B A C)+m(\angle B A D)=130^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BAC})+\mathrm{m}(\angle \mathrm{ACB})=130^{\circ}$
In $\triangle \mathrm{ABC}$:
$\therefore \mathrm{m}(\angle \mathrm{ABC})=180^{\circ}-130^{\circ}=50^{\circ}$
(The req.)
4
[a] $\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{ADC})=\mathrm{m}(\angle \mathrm{CBE})=85^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CDB})=85^{\circ}-55^{\circ}=30^{\circ}$
(The req.)
[b] $\because \mathrm{m}(\angle \mathrm{ADB})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{AMB})$
(inscribed and central angles subtended by $\overparen{A B}$)
$\therefore \mathrm{m}(\angle \mathrm{ADB})=\frac{1}{2} \times 140^{\circ}=70^{\circ}$
, $\because \overline{\mathrm{AC}} / / \overline{\mathrm{BD}}, \overleftrightarrow{\mathrm{AD}}$ is a transversal.
$\therefore \mathrm{m}(\angle \mathrm{CAD})+\mathrm{m}(\angle \mathrm{ADB})=180^{\circ}$
(two interior angles in the same side of the transversal)
$\therefore \mathrm{m}(\angle \mathrm{CAD})=180^{\circ}-70^{\circ}=110^{\circ}$
(The req.)

5

[a] $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}} \quad, \because \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}$
$\therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{CD}}$
$\therefore \mathrm{Y}$ is the midpoint of $\overline{\mathrm{CD}}$
[b] $\because \overrightarrow{\mathrm{EA}}, \overrightarrow{\mathrm{EC}}$ are two tangents to the circle M
$\therefore \mathrm{EA}=\mathrm{CE}$
$\because \overrightarrow{\mathrm{EB}}=\overrightarrow{\mathrm{ED}}$ are two tangents to the circle N
$\therefore \mathrm{EB}=\mathrm{ED}$
Adding (1) and (2) : $\therefore \mathrm{AB}=\mathrm{CD}$

8 E1-Dakahlia

1
[a] $1 \mathrm{c} \quad 2 \mathrm{~b} \quad 3 \mathrm{a}$
[b] $\because \mathrm{m}(\angle \mathrm{BMD})=2 \mathrm{~m}(\angle \mathrm{~A})$
(central and inscribed angles subtended by $\overparen{B D}$)
, $\mathrm{m}(\angle \mathrm{BMD})=\mathrm{m}(\angle \mathrm{BCD})$
$\therefore \mathrm{m}(\angle \mathrm{BCD})=2 \mathrm{~m}(\angle \mathrm{~A})$
, $\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{A})+\mathrm{m}(\angle \mathrm{BCD})=180^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})+2 \mathrm{~m}(\angle \mathrm{~A})=180^{\circ}$
$\therefore 3 \mathrm{~m}(\angle \mathrm{~A})=180^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})=60^{\circ}$
(The req.)
2
$[\mathrm{a}] \mathrm{a} \quad 2 \mathrm{c} \quad 3 \mathrm{~b}$
[b] In $\triangle \mathrm{ABC}$:
$\because \mathrm{AC}=\mathrm{BC}$
$\therefore \mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{BAC})(1)$

$\because \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}, \overleftrightarrow{\mathrm{AC}}$ is a transversal to them
$\therefore \mathrm{m}(\angle \mathrm{DCA})=\mathrm{m}(\angle \mathrm{BAC})($ alternate angles $)(2)$
From (1) and (2): $\therefore \mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{DCA})$
$\therefore \stackrel{\rightharpoonup}{\mathrm{CD}}$ is a tangent to the circumcircle of $\triangle \mathrm{ABC}$
(Q.E.D.)

3

$$
\begin{aligned}
& \text { [a] } \because \overline{\mathrm{AB}} \text { is a diameter } \quad \therefore \mathrm{m}(\overparen{\mathrm{AB}})=180^{\circ} \\
& \quad, \because \mathrm{m}(\overparen{\mathrm{BD}})=\mathrm{m}(\overparen{\mathrm{AD}}) \\
& \quad \therefore \mathrm{m}(\overparen{B D})=180^{\circ} \div 2=90^{\circ} \\
& \quad \because \mathrm{m}(\overparen{\mathrm{BD}})=3 \mathrm{~m}(\overparen{(\mathrm{AC})} \\
& \therefore \mathrm{m}(\overparen{(\mathrm{AC}})=90^{\circ} \div 3=30^{\circ} \\
& \therefore \mathrm{m}(\angle \mathrm{AEC})=\frac{1}{2}[\mathrm{~m}(\overparen{B D})+\mathrm{m}(\overparen{(\mathrm{AC}})] \\
& \\
& =\frac{1}{2}\left(90^{\circ}+30^{\circ}\right)=60^{\circ} \quad \text { (The req.) }
\end{aligned}
$$

[b] Const. : Draw $\overline{\mathrm{MX}}, \overline{\mathrm{MY}}, \overline{\mathrm{MZ}}$
Proof : $\because \overline{\mathrm{AB}}, \overline{\mathrm{BC}}, \overline{\mathrm{AC}}$ are three tangents to
the smaller circle
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{BC}}$
, $\overline{\mathrm{MZ}} \perp \overline{\mathrm{AC}}$

, $\because M X=M Y=M Z=r$ (radii of the smaller circle)
$\therefore \mathrm{AB}=\mathrm{BC}=\mathrm{AC}$
$\therefore \triangle \mathrm{ABC}$ is an equilateral triangle
(Q.E.D.)

4
[a] \because The two circles are touching internally.
$\therefore \mathrm{MN}=10-6=4 \mathrm{~cm}$.
$\because \overrightarrow{\mathrm{MN}} \perp \overrightarrow{\mathrm{AB}}$
, the area of $\triangle \mathrm{BMN}=\frac{1}{2} \times \mathrm{MN} \times \mathrm{AB}$
$\therefore 24=\frac{1}{2} \times 4 \times \mathrm{AB} \quad \therefore \mathrm{AB}=12 \mathrm{~cm}$. (The req.)
[b] $\because \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}$
$\therefore \mathrm{m}(\overparen{\mathrm{AC}})=\mathrm{m}(\overparen{\mathrm{BD}})$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{BAD})$
\therefore In $\triangle \mathrm{EAB}: \mathrm{AE}=\mathrm{EB}$

(Q.E.D.)

5
[a] $\because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments to the circle
$\therefore \mathrm{AB}=\mathrm{AC}$
,$\because \overrightarrow{\mathrm{AM}}$ bisects $\angle \mathrm{A} \quad \therefore \mathrm{m}(\angle \mathrm{A})=60^{\circ}$
From (1) and (2) :
$\therefore \triangle \mathrm{ABC}$ is an equilateral triangle
\therefore The perimeter of $\triangle \mathrm{ABC}=3 \times 8=24 \mathrm{~cm}$.
(First req.)
,$\because m(\angle A B C)=60^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{E})$ (inscribed) $=\mathrm{m}(\angle \mathrm{ABC})$ (tangency).
$\therefore \mathrm{m}(\angle \mathrm{E})=60^{\circ}$
(Second req.)
[b] In \triangle ABL:
$\because \mathrm{m}(\angle \mathrm{L})$
$=180^{\circ}-[\mathrm{m}(\angle 1)+\mathrm{m}(\angle 2)]$,$\because m(\angle 1)=\frac{1}{2} m(\angle A)$
, $\mathrm{m}(\angle 2)=\frac{1}{2} \mathrm{~m}(\angle \mathrm{~B})$

$\therefore \mathrm{m}(\angle \mathrm{L})=180^{\circ}-\left[\frac{1}{2} \mathrm{~m}(\angle \mathrm{~A})+\frac{1}{2} \mathrm{~m}(\angle \mathrm{~B})\right]$ (1)
In \triangle CDY:
$\because \mathrm{m}(\angle \mathrm{Y})=180^{\circ}-[\mathrm{m}(\angle 3)+\mathrm{m}(\angle 4)]$
$, \because m(\angle 3)=\frac{1}{2} m(\angle C), m(\angle 4)=\frac{1}{2} m(\angle D)$
$\therefore \mathrm{m}(\angle \mathrm{Y})=180^{\circ}-\left[\frac{1}{2} \mathrm{~m}(\angle \mathrm{C})+\frac{1}{2} \mathrm{~m}(\angle \mathrm{D})\right](2)$
Adding (1) and (2):
$\therefore \mathrm{m}(\angle \mathrm{L})+\mathrm{m}(\angle \mathrm{Y})$
$=180^{\circ}-\left[\frac{1}{2} \mathrm{~m}(\angle \mathrm{~A})+\mathrm{m}(\angle \mathrm{B})\right]$
$+180^{\circ}-\left[\frac{1}{2} m(\angle \mathrm{C})+\frac{1}{2} \mathrm{~m}(\angle \mathrm{D})\right]=360^{\circ}$
$-\frac{1}{2}[\mathrm{~m}(\angle \mathrm{~A})+\mathrm{m}(\angle \mathrm{B})+\mathrm{m}(\angle \mathrm{C})+\mathrm{m}(\angle \mathrm{D})]$
,$\because m(\angle A)+m(\angle B)+m(\angle C)+m(\angle D)=360^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{L})+\mathrm{m}(\angle \mathrm{Y})=360^{\circ}-\frac{1}{2} \times 360^{\circ}=180^{\circ}$
$\therefore \mathrm{XYZL}$ is a cyclic quadrilateral.
(Q.E.D.)

$9 \quad$ Ismailia

2
[a] $\because \mathrm{m}(\angle \mathrm{AED})=\frac{1}{2}[\mathrm{~m}(\overparen{\mathrm{AD}})+\mathrm{m}(\overparen{\mathrm{BC}})]$
$\therefore 115^{\circ}=\frac{1}{2}\left[130^{\circ}+\mathrm{m} \overparen{(\mathrm{BC})}\right]$
$\therefore 230^{\circ}=130^{\circ}+\mathrm{m} \overparen{(\mathrm{BC})}$
$\therefore \mathrm{m}(\overparen{\mathrm{BC}})=230^{\circ}-130^{\circ}=100^{\circ}$
(The req.)
[b] $\because \mathrm{ABXY}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{A})=\mathrm{m}(\angle \mathrm{CXY})=90^{\circ}$
$\therefore \overline{\mathrm{CB}}$ is a diameter of the given circle. (Q.E.D.)
3
[a] $\because \mathrm{m}(\angle \mathrm{ADB})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{AMB})$
(inscribed and central angles subtended by $\overparen{A B}$)
$\therefore \mathrm{m}(\angle \mathrm{ADB})=\frac{1}{2} \times 140^{\circ}=70^{\circ}$
, $\because \overline{\mathrm{AC}} / / \overline{\mathrm{BD}}, \overleftrightarrow{\mathrm{AD}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{CAD})+\mathrm{m}(\angle \mathrm{ADB})=180^{\circ}$
(two interior angles in the same side of the transversal)
$\therefore \mathrm{m}(\angle \mathrm{CAD})=180^{\circ}-70^{\circ}=110^{\circ} \quad$ (The req.)
[b] In $\triangle \mathrm{ABD}: \because \mathrm{AB}=\mathrm{AD}$
$\therefore \mathrm{m}(\angle \mathrm{ABD})=\mathrm{m}(\angle \mathrm{ADB})=\frac{180^{\circ}-80^{\circ}}{2}=50^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CBD})=130^{\circ}-50^{\circ}=80^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})=\mathrm{m}(\angle \mathrm{CBD})=80^{\circ}$
$\therefore \overline{\mathrm{BC}}$ is a tangent-segment to the circle which passes through the points A, B and D (Q.E.D.)

4
[a] $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}} \quad \therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$
,$\because \mathrm{Y}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
, $\because \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{MX}=\mathrm{MY}$, $\because M D=M E=r$
$\therefore \mathrm{DX}=\mathrm{EY}$
(Q.E.D.)
[b] $\because \overline{\mathrm{XY}}$ is a diameter.
$\therefore \mathrm{m}(\widehat{\mathrm{LX}})=180^{\circ}-\left(70^{\circ}+60^{\circ}\right)=50^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{XYZ})=\frac{1}{2} \mathrm{~m} \overparen{(\mathrm{XZ})}=\frac{1}{2}\left(60^{\circ}+50^{\circ}\right)=55^{\circ}$
, $\left.\mathrm{m}(\angle \mathrm{LXY})=\frac{1}{2} \mathrm{~m} \overparen{(\mathrm{LY}}\right)=\frac{1}{2}\left(60^{\circ}+70^{\circ}\right)=65^{\circ}$
, \because XYZL is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{YZL})=180^{\circ}-65^{\circ}=115^{\circ}$
, $\mathrm{m}(\angle \mathrm{XLZ})=180^{\circ}-55^{\circ}=125^{\circ}$
(The req.)

5
[a] $\because \mathrm{BCDE}$ is a cyclic quadrilateral.
$\therefore \mathrm{m}(\angle \mathrm{EBC})+\mathrm{m}(\angle \mathrm{CDE})=180^{\circ}$
$\therefore x+2 x=180^{\circ} \quad \therefore 3 x=180^{\circ} \quad \therefore x=60^{\circ}$
,$\because \overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABE}$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{EBC})=60^{\circ}$
$, \because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to the circle
$\therefore \mathrm{AB}=\mathrm{AC}$
From (1) and (2) :
$\therefore \triangle \mathrm{ABC}$ is an equilateral triangle.
(Q.E.D.)
[b] \because The two circles are touching internally
$\therefore \mathrm{MN}=10-6=4 \mathrm{~cm}$.
,$\because \overleftrightarrow{\mathrm{MN}} \perp \overrightarrow{\mathrm{XY}}$

$$
\therefore \mathrm{m}(\angle \mathrm{MXY})=90^{\circ}
$$

, \because the area of $\triangle Y M N=\frac{1}{2} \times M N \times X Y$
$\therefore 24=\frac{1}{2} \times 4 \times \mathrm{XY} \quad \therefore \mathrm{XY}=12 \mathrm{~cm}$.
In \triangle MXY: $\because \mathrm{m}(\angle \mathrm{MXY})=90^{\circ}$
$\therefore(M Y)^{2}=(M X)^{2}+(X Y)^{2}=(10)^{2}+(12)^{2}=244$
$\therefore M Y=\sqrt{244} \approx 15.6 \mathrm{~cm}$.
(The req.)
10 Suez
1)b
(2) b
(3) d
(4) c
(5) 6 c

2
[a] $\because \overrightarrow{\mathrm{AD}}$ is a tangent to the circle.
$\therefore \overline{\mathrm{MD}} \perp \overrightarrow{\mathrm{AD}} \quad \therefore \mathrm{m}(\angle \mathrm{MDA})=90^{\circ}$
,\because E is the midpoint of $\overline{\mathrm{BC}}$
$\therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{BC}} \quad \therefore \mathrm{m}(\angle \mathrm{MEA})=90^{\circ}$
From the quadrilateral ADME :
$\therefore \mathrm{m}(\angle \mathrm{DME})=360^{\circ}-\left(90^{\circ}+90^{\circ}+60^{\circ}\right)$

$$
=120^{\circ} \quad \text { (The req.) }
$$

[b] $\mathrm{m}(\angle \mathrm{AEC})=\frac{1}{2}[\mathrm{~m}(\widehat{\mathrm{BD}})+\mathrm{m}(\overparen{\mathrm{AC}})]$

$$
=\frac{1}{2}\left(100^{\circ}+50^{\circ}\right)=75^{\circ} \quad \text { (The req.) }
$$

3
[a] $\because \mathrm{AB}=\mathrm{AC}, \overrightarrow{\mathrm{MD}} \perp \overline{\mathrm{AB}}, \overrightarrow{\mathrm{ME}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{MD}=\mathrm{ME} \quad, \because \mathrm{MX}=\mathrm{MY}=\mathrm{r}$
$\therefore \mathrm{XD}=\mathrm{YE}$
(Q.E.D.)
[b] $\because \overleftrightarrow{\mathrm{BC}}$ is a tangent to the circle.
$\therefore \mathrm{m}(\angle \mathrm{ABC})$ (tangency) $=\mathrm{m}(\angle \mathrm{ADB})$ (inscribed) $=70^{\circ}$
(First req.)
, $\mathrm{m}(\overparen{\mathrm{AB}})=2 \mathrm{~m}(\angle \mathrm{ADB})=2 \times 70^{\circ}=140^{\circ}$
(Second req.)

4

[a] State by yourself.
[b] In $\triangle \mathrm{ABD}: \because \mathrm{AB}=\mathrm{AD}$
$\therefore \mathrm{m}(\angle \mathrm{ABD})=\mathrm{m}(\angle \mathrm{ADB})=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BAD})=180^{\circ}-2 \times 30^{\circ}=120^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BAD})=\mathrm{m}(\angle \mathrm{DCE})=120^{\circ}$
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral.
(Q.E.D.)

5
[a] $\because \mathrm{m}(\widehat{\mathrm{BD}})=2 \mathrm{~m}(\angle \mathrm{BCD})=2 \times 25^{\circ}=50^{\circ}$
$\because \mathrm{D}$ is the midpoint of $\overparen{\mathrm{AB}}$
$\therefore \mathrm{m}(\overparen{\mathrm{AB}})=2 \mathrm{~m}(\widehat{\mathrm{BD}})=2 \times 50^{\circ}=100^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{AMB})=\mathrm{m}(\widehat{\mathrm{AB}})=100^{\circ} \quad$ (The req.)
[b] $\because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to the circle
$\therefore \mathrm{AB}=\mathrm{AC}$
\therefore In $\triangle \mathrm{ABC}$:
$m(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=\frac{180^{\circ}-50^{\circ}}{2}=65^{\circ}$
,\because EBCD is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{EBC})+\mathrm{m}(\angle \mathrm{EDC})=180^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{EBC})=180^{\circ}-115^{\circ}=65^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{EBC})=65^{\circ}$
$\therefore \overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABE}$
(Q.E.D.)

11 Port Said

1 d	(2) b	(3) c	(4) c	(5)b	(6) b
7 a	(8)	(9)	(10) b	(11) c	(12) b
(13) c	(14) c	(15) c	[16) d	(17) c	[18) a
(19) d	20) a	21] d			

(22 $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$
$, \because \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}, \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{MX}=\mathrm{MY}$
[23) $\because \mathrm{ABDC}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{ABD})+\mathrm{m}(\angle \mathrm{ACD})=180^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ABD})=180^{\circ}-115^{\circ}=65^{\circ}$
, $\because \overline{\mathrm{AB}}$ is a diameter $\therefore \mathrm{m}(\angle \mathrm{ADB})=90^{\circ}$
\therefore In $\triangle \mathrm{ABD}: \mathrm{m}(\angle \mathrm{DAB})=180^{\circ}-\left(90^{\circ}+65^{\circ}\right)$ $=25^{\circ}$ (The req.)
(24) $\because \overrightarrow{\mathrm{AB}}$ is a tangent to the circle
$\therefore \mathrm{m}(\angle \mathrm{BDC})$ (inscribed) $=\mathrm{m}(\angle \mathrm{ABC})$ (tangency) $=70^{\circ}$
$, \because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to the circle
$\therefore \mathrm{AB}=\mathrm{AC}$
In $\triangle \mathrm{ABC}: \therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=70^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-\left(70^{\circ}+70^{\circ}\right)=40^{\circ}$ (The req.)

12 Damietta

1
$1 \mathrm{~d} 4 \mathrm{~b} \quad 3 \mathrm{a} \quad 4 \mathrm{c} \quad 5 \mathrm{~b} \quad 6 \mathrm{a}$

2
[a] $\because \mathrm{m}(\angle \mathrm{EBC})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{EMC})$
(inscribed and central angles subtended by $\overparen{E C}$)
$\therefore \mathrm{m}(\angle \mathrm{EBC})=\frac{1}{2} \times 120^{\circ}=60^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ABE})=180^{\circ}-60^{\circ}=120^{\circ}$
In $\triangle \mathrm{ABE}: \because \mathrm{AB}=\mathrm{BE}$
$\therefore \mathrm{m}(\angle \mathrm{BAE})=\mathrm{m}(\angle \mathrm{BEA})=\frac{180^{\circ}-120^{\circ}}{2}=30^{\circ}$
(The req.)
[b] $\because \overrightarrow{\mathrm{YB}}$ is a tangent,$\overline{\mathrm{AB}}$ is a diameter
$\therefore \overline{\mathrm{AB}} \perp \overrightarrow{\mathrm{YB}}$
$\therefore \mathrm{m}(\angle \mathrm{ABY})=90^{\circ}$
, $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{MXA})=90^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ABY})=\mathrm{m}(\angle \mathrm{AXY})=90^{\circ}$
and they are drawn on $\overline{\mathrm{AY}}$ and on one side of it
$\therefore \mathrm{AXBY}$ is a cyclic quadrilateral.
(Q.E.D.)

3
[a] $\because \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
, $\mathrm{MX}=\mathrm{MY}$

$$
\therefore \mathrm{AB}=\mathrm{AC}
$$

In $\triangle \mathrm{ABC}$:
$\therefore \mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{C})=\frac{180^{\circ}-50^{\circ}}{2}=65^{\circ}$ (The req.)
[b] $\because \overline{\mathrm{ED}} / / \overline{\mathrm{CB}}$
$\therefore \mathrm{m}(\overparen{B D})=\mathrm{m}(\overparen{(E C})$
$\therefore \mathrm{m}(\angle \mathrm{BAD})=\mathrm{m}(\angle \mathrm{CAE})$
Adding $m(\angle B A C)$ to both sides :
$\therefore \mathrm{m}(\angle \mathrm{DAC})=\mathrm{m}(\angle \mathrm{EAB})$
(Q.E.D.)

4
[a] In $\triangle \mathrm{ABC}: \because \mathrm{AB}=\mathrm{BC}=\mathrm{CA}$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=\mathrm{m}(\angle \mathrm{BAC})=60^{\circ}$
, $\because \overrightarrow{\mathrm{AD}} / / \overline{\mathrm{BC}}, \overleftrightarrow{\mathrm{AC}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{CAD})=\mathrm{m}(\angle \mathrm{BCA})=60^{\circ}$ (alternate angles)
$\therefore \mathrm{m}(\angle \mathrm{CAD})=\mathrm{m}(\angle \mathrm{ABC})$
$\therefore \overrightarrow{\mathrm{AD}}$ is a tangent to the circumcircle of $\triangle \mathrm{ABC}$
(Q.E.D.)
[b] $\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{BAD})=180^{\circ}-75^{\circ}=105^{\circ}$
,\because ABFE is a cyclic quadrilateral and $\angle \mathrm{BAD}$ is exterior of it.
$\therefore \mathrm{m}(\angle \mathrm{F})=\mathrm{m}(\angle \mathrm{BAD})=105^{\circ} \quad$ (First req.)
$\therefore \mathrm{m}(\angle \mathrm{F})+\mathrm{m}(\angle \mathrm{BCD})=105^{\circ}+75^{\circ}=180^{\circ}$
and they are interior angles in the same side of $\stackrel{\rightharpoonup}{\mathrm{FC}}$
$\therefore \overline{\mathrm{CD}} / / \overline{\mathrm{EF}}$
(Second req.)
5
[a]

We can draw two circles.
[b] $\because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to the circle
$\therefore \mathrm{AB}=\mathrm{AC}$
In $\triangle \mathrm{ABC}$:
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=\frac{180^{\circ}-40^{\circ}}{2}=70^{\circ}$
,\because BCED is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{CBD})=180^{\circ}-110^{\circ}=70^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{CBD})=70^{\circ}$
$\therefore \overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABD}$
(Q.E.D.)

13 Kafr El-Sheikh

1
(1) b [2] 3 d 4 b 5 (a (b

2
[a] $\because \overleftrightarrow{\mathrm{MN}}$ is the line of centres
, $\overline{\mathrm{AB}}$ is the common chord
$\therefore \overleftrightarrow{\mathrm{MN}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{ACN})=90^{\circ}$
From the quadrilateral XCNY :
$\therefore \mathrm{m}(\angle \mathrm{XYN})=360^{\circ}-\left(90^{\circ}+135^{\circ}+45^{\circ}\right)=90^{\circ}$
$\therefore \overleftrightarrow{\mathrm{XY}}$ is a tangent to the circle N at Y (Q.E.D.)
[b] Const. : Draw MB
Proof: $\because \overrightarrow{\mathrm{AB}}$ is a tangent
$\therefore \overline{\mathrm{MB}} \perp \overrightarrow{\mathrm{AB}}$
$\therefore \mathrm{m}(\angle \mathrm{ABM})=90^{\circ}$
In $\triangle \mathrm{AMB}$:

$\therefore \mathrm{m}(\angle \mathrm{BMA})=180^{\circ}-\left(90^{\circ}+40^{\circ}\right)=50^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BDC})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{BMC})=\frac{1}{2} \times 50^{\circ}=25^{\circ}$ (inscribed and central angles subtended by $\overparen{B C}$)
(The req.)

3

[a] $\because \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}}$
$, \because \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}, \mathrm{MD}=\mathrm{ME}$
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$
$\therefore \mathrm{AB}=\mathrm{AC}$
In $\triangle \mathrm{ABC}$:
$\therefore \mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{C})=\frac{180^{\circ}-40^{\circ}}{2}=70^{\circ}$ (The req.)
[b] $\because \mathrm{m}(\angle \mathrm{ADE})$
$\left.=\frac{1}{2}[\mathrm{~m}(\widehat{\mathrm{AY}})+\mathrm{m} \overparen{\mathrm{XB}})\right]$
, m ($\angle \mathrm{AED}$)
$=\frac{1}{2}[\mathrm{~m}(\overparen{\mathrm{AX}})+\mathrm{m}(\widehat{\mathrm{CY}})]$
(2)

$\because \mathrm{X}$ is the midpoint of $\overparen{\mathrm{AB}}$
, Y is the midpoint of $\overparen{\mathrm{AC}}$
$\therefore \mathrm{m}(\overparen{\mathrm{AX}})=\mathrm{m}(\overparen{\mathrm{BX}})$
, $\mathrm{m}(\overparen{\mathrm{AY}})=\mathrm{m}(\overparen{\mathrm{CY}})$
From (1), (2), (3) and (4) :
$\therefore \mathrm{m}(\angle \mathrm{ADE})=\mathrm{m}(\angle \mathrm{AED})$
In $\triangle \mathrm{ADE}: \therefore \mathrm{AD}=\mathrm{AE}$
(Q.E.D.)

4

[a] $\operatorname{In} \triangle \mathrm{XYL}: \because \mathrm{XY}=\mathrm{YL}$
$\therefore \mathrm{m}(\angle \mathrm{X})=\mathrm{m}(\angle \mathrm{XLY})=\frac{180^{\circ}-100^{\circ}}{2}=40^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{X})=\mathrm{m}(\angle \mathrm{Z})=40^{\circ}$
and they are drawn on $\overline{\mathrm{YL}}$ and on one side of it.
\therefore The points $\mathrm{X}, \mathrm{Y}, \mathrm{L}$ and Z have only one circle passing through them.
(Q.E.D.)
[b]

$\mathrm{r}=4.1 \mathrm{~cm}$.

5
[a] In $\triangle \mathrm{ABC}: \because \mathrm{BA}=\mathrm{BC}$
$\therefore \mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle \mathrm{BCA})=50^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{B})=180^{\circ}-2 \times 50^{\circ}=80^{\circ}$
, $\because \mathrm{m}(\angle \mathrm{B})+\mathrm{m}(\angle \mathrm{D})=80^{\circ}+100^{\circ}=180^{\circ}$
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral.
(Q.E.D.)
[b] \because EDBC is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{CBD})=180^{\circ}-130^{\circ}=50^{\circ}$
$, \because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents
$\therefore \mathrm{AB}=\mathrm{AC}$
In $\triangle A B C$:
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=\frac{180^{\circ}-80^{\circ}}{2}=50^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{CBD})=50^{\circ}$
$\therefore \overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABD}$
(Q.E.D. 1)
,$\because \mathrm{m}(\angle \mathrm{ACB})=\mathrm{m}(\angle \mathrm{CBD})=50^{\circ}$
and they are alternate angles
$\therefore \overleftrightarrow{\mathrm{BD}} / / \overleftrightarrow{\mathrm{AC}}$
(Q.E.D. 2)

14 El-Beheira

(1) 2 d (3) 4 d 5 d 6b

2
[a] $\because \mathrm{E}$ is the midpoint of $\overline{\mathrm{BC}}$
$\therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{BC}} \quad \therefore \mathrm{m}(\angle \mathrm{MEA})=90^{\circ}$
,$\because \overrightarrow{\mathrm{AD}}$ is a tangent $\quad \therefore \overline{\mathrm{MD}} \perp \overrightarrow{\mathrm{AD}}$
$\therefore \mathrm{m}(\angle \mathrm{MDA})=90^{\circ}$
\therefore From the quadrilateral ADME :
$\mathrm{m}(\angle \mathrm{DME})=360^{\circ}-\left(90^{\circ}+90^{\circ}+56^{\circ}\right)=124^{\circ}$
(The req.)
[b] $\because \mathrm{m}(\angle \mathrm{ACB})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{AMB})$
(inscribed and central angles subtended by $\widehat{\mathrm{AB}}$)
$\therefore \mathrm{m}(\angle \mathrm{ACB})=\frac{1}{2} \times 120^{\circ}=60^{\circ}$
,$\because \overleftrightarrow{\mathrm{CD}} / / \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\overparen{\mathrm{CA}})=\mathrm{m}(\overparen{(\mathrm{CB})}$
$\therefore \mathrm{CA}=\mathrm{CB}$
From (1) and (2) :
$\therefore \triangle \mathrm{CAB}$ is an equilateral triangle.
(Q.E.D.)

3

$[\mathrm{a}] \because \mathrm{FX}=\mathrm{EY}, \mathrm{MF}=\mathrm{ME}=\mathrm{r} \quad \therefore \mathrm{MX}=\mathrm{MY}$ $, \because \overrightarrow{\mathrm{MX}} \perp \overline{\mathrm{AB}}, \overrightarrow{\mathrm{MY}} \perp \overline{\mathrm{CD}}$
$\therefore \mathrm{AB}=\mathrm{CD}$
(Q.E.D.)
[b] $\because \mathrm{ABCD}$ is cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{ADC})=\mathrm{m}(\angle \mathrm{CBE})=85^{\circ}$
, $\because \mathrm{m}(\angle \mathrm{ADB})=\frac{1}{2} \mathrm{~m}(\widehat{\mathrm{AB}})=\frac{1}{2} \times 100^{\circ}=50^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BDC})=85^{\circ}-50^{\circ}=35^{\circ} \quad$ (The req.)

4

[a] In $\triangle \mathrm{ADE}: \because \mathrm{AE}=\mathrm{DE}$
$\therefore \mathrm{m}(\angle \mathrm{A})=\mathrm{m}(\angle \mathrm{D})$
$\therefore \mathrm{m}(\widehat{\mathrm{BD}})=\mathrm{m}(\overparen{(A C})$
,$\because m(\angle C)=\frac{1}{2} m(\overparen{B D})$
,$m(\angle \mathrm{~B})=\frac{1}{2} \mathrm{~m}(\overparen{\mathrm{AC}})$
$\therefore \mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{B})$
In $\triangle \mathrm{EBC}: \therefore \mathrm{EB}=\mathrm{EC}$
(Q.E.D.)
[b] $\because \overline{\mathrm{AB}}$ is a diameter $\quad \therefore \mathrm{m}(\angle \mathrm{ACB})=90^{\circ}$
,$\because \overrightarrow{\mathrm{DE}} \perp \overrightarrow{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{ADE})=90^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ACE})=\mathrm{m}(\angle \mathrm{ADE})=90^{\circ}$
and they are drawn on $\overline{\mathrm{AE}}$ and on one side of it
$\therefore \mathrm{ACDE}$ is a cyclic quadrilateral.
(Q.E.D.)

5

[a] $\because \overrightarrow{\mathrm{XA}}, \overrightarrow{\mathrm{XB}}$ are two tangents
$\therefore \mathrm{XA}=\mathrm{XB}$
In $\triangle \mathrm{XAB}$:
$\therefore \mathrm{m}(\angle \mathrm{XAB})=\mathrm{m}(\angle \mathrm{XBA})=\frac{180^{\circ}-70^{\circ}}{2}=55^{\circ}$
, $\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{BAD})=180^{\circ}-125^{\circ}=55^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{XAB})=\mathrm{m}(\angle \mathrm{BAD})=55^{\circ}$
$\therefore \overrightarrow{\mathrm{AB}}$ bisects $\angle \mathrm{DAX}$
[b] $\because \overline{X Y} / / \overline{B C}$
, $\overparen{\mathrm{AB}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{AXY})=\mathrm{m}(\angle \mathrm{ABC})$ (corresponding angles)
,$\because \mathrm{m}(\angle \mathrm{ABC})$ (inscribed)
 $=m(\angle C A D)$ (tangency)
$\therefore \mathrm{m}(\angle \mathrm{AXY})=\mathrm{m}(\angle \mathrm{YAD})$
$\therefore \overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the points A, X and Y (Q.E.D.)

15 El-Fayoum

1 b
(2) 3 a 4) 5 d 6 b

2
[a] $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{MXA})=90^{\circ}$
, $\because \mathrm{Y}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}} \quad \therefore \mathrm{m}(\angle \mathrm{MYA})=90^{\circ}$
From the quadrilateral AXMY :
$\therefore \mathrm{m}(\angle \mathrm{EMD})=360^{\circ}-\left(90^{\circ}+90^{\circ}+70^{\circ}\right)=110^{\circ}$
(First req.)
,$\because A B=A C \quad \therefore M X=M Y$
,$\because M D=M E=r \quad \therefore X D=Y E \quad$ (Second req.)
[b] $\because \overline{\mathrm{AB}}$ is a diameter $\quad \therefore \mathrm{m}(\widehat{\mathrm{AB}})=180^{\circ}$
,$\because \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}$
$\therefore \mathrm{m}(\overparen{\mathrm{AC}})=\mathrm{m}(\overparen{\mathrm{BD}})=\frac{180^{\circ}-100^{\circ}}{2}=40^{\circ}$ (First req.)
, $\because m(\angle \mathrm{AEC})=\frac{1}{2} \mathrm{~m}(\overparen{\mathrm{AC}})=20^{\circ}$
$\therefore 3 x-25^{\circ}=20^{\circ} \quad \therefore 3 x=45^{\circ}$
$\therefore x=15^{\circ}$
(Second req.)

3

[a] The measure of the arc $=\frac{1}{4} \times 360^{\circ}=90^{\circ}$
The length of the arc $=\frac{90^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times 14$

$$
=22 \mathrm{~cm} . \quad \text { (The req.) }
$$

[b] $\because \overrightarrow{\mathrm{AD}}$ is a tangent to the circle
$\therefore \mathrm{m}(\angle \mathrm{ACB})$ (inscribed) $=\mathrm{m}(\mathrm{BAD})$ (tangency)
$\therefore \mathrm{m}(\angle \mathrm{ACB})+\mathrm{m}(\angle \mathrm{CAB})=130^{\circ}$
In $\triangle \mathrm{ABC}$:
$\therefore \mathrm{m}(\angle \mathrm{B})=180^{\circ}-130^{\circ}=50^{\circ}$
(The req.)
4
[a] $\because \mathrm{E}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{MED})=90^{\circ}$
, $\because \overline{\mathrm{BD}}$ is a tangent-segment to the circle
$\therefore \overline{\mathrm{MB}} \perp \overline{\mathrm{BD}}$
$\therefore \mathrm{m}(\angle \mathrm{MBD})=90^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{MED})+\mathrm{m}(\angle \mathrm{MBD})=90^{\circ}+90^{\circ}=180^{\circ}$
$\therefore \mathrm{EMBD}$ is a cyclic quadrilateral.
(Q.E.D.)
[b] $\because \overrightarrow{\mathrm{XA}}, \overrightarrow{\mathrm{XB}}$ are two tangents to the circle
$\therefore \mathrm{XA}=\mathrm{XB}$
\therefore In $\triangle \mathrm{ABX}$:
$\mathrm{m}(\angle \mathrm{XAB})=\mathrm{m}(\angle \mathrm{XBA})=\frac{180^{\circ}-70^{\circ}}{2}=55^{\circ}$
, $\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{BAD})=180^{\circ}-125^{\circ}=55^{\circ}$
From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{XAB})=\mathrm{m}(\angle \mathrm{BAD})=55^{\circ}$
$\therefore \overrightarrow{\mathrm{AB}}$ bisects $\angle \mathrm{DAX}$
(Q.E.D.)

5

[a] $\because \mathrm{m}(\angle \mathrm{A})=\frac{1}{2}[\mathrm{~m}(\overparen{\mathrm{EC}})-\mathrm{m}(\overparen{\mathrm{BD}})]$
$\therefore 30^{\circ}=\frac{1}{2}\left[\mathrm{~m}(\overparen{(E C})-44^{\circ}\right]$
$\therefore 60^{\circ}=\mathrm{m}(\overparen{\mathrm{EC}})-44^{\circ}$
$\therefore \mathrm{m}(\overparen{\mathrm{EC}})=60^{\circ}+44^{\circ}=104^{\circ}$
,$\because \mathrm{m}(\widehat{\mathrm{ED}})=2 \mathrm{~m}(\angle \mathrm{ECD})=2 \times 48^{\circ}=96^{\circ}$
$\therefore \mathrm{m}(\overparen{B C})=360^{\circ}-\left(104^{\circ}+96^{\circ}+44^{\circ}\right)$

$$
=116^{\circ}
$$

(The req.)
[b] $\because \overrightarrow{\mathrm{AF}} / / \overline{\mathrm{DE}}, \overleftrightarrow{\mathrm{AE}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{AED})=\mathrm{m}(\angle \mathrm{EAF})$ (alternate angles)
, $\because \mathrm{m}(\angle \mathrm{ACB})$ (inscribed) $=\mathrm{m}(\angle \mathrm{BAF})$ (tangency)
$\therefore \mathrm{m}(\angle \mathrm{ACB})=\mathrm{m}(\angle \mathrm{AED})$
$\therefore \mathrm{BCDE}$ is a cyclic quadrilateral.
(Q.E.D.)

16. Beni Suef

	1	c	2 a	3 b

2
[a] $\because \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$
$, \because \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}, \mathrm{MD}=\mathrm{ME}$
$\therefore \mathrm{AB}=\mathrm{AC}$
In $\triangle \mathrm{ABC}: \therefore \mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{C})=70^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-2 \times 70^{\circ}=40^{\circ} \quad$ (The req.)
[b] In $\triangle \mathrm{BMC}: \because \mathrm{MB}=\mathrm{MC}=\mathrm{r}$
$\therefore \mathrm{m}(\angle \mathrm{MCB})=\mathrm{m}(\angle \mathrm{MBC})=\frac{180^{\circ}-100^{\circ}}{2}=40^{\circ}$
$\because \mathrm{m}(\angle \mathrm{BDC})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{BMC})=\frac{1}{2} \times 100^{\circ}=50^{\circ}$
(inscribed and central angles subtended by $\overparen{B C}$)
, $\because \angle \mathrm{ABD}$ is an exterior angle of $\triangle \mathrm{BCD}$
$\therefore \mathrm{m}(\angle \mathrm{BCD})=120^{\circ}-50^{\circ}=70^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{DCM})=70^{\circ}-40^{\circ}=30^{\circ} \quad$ (The req.)
3
[a] $\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{ADC})=\mathrm{m}(\angle \mathrm{CBE})=100^{\circ}$
,$\because \mathrm{m}(\angle \mathrm{ADB})=\frac{1}{2} \mathrm{~m}(\widehat{\mathrm{AB}})=\frac{1}{2} \times 110^{\circ}=55^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BDC})=100^{\circ}-55^{\circ}=45^{\circ} \quad$ (The req.)
[b] $\because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments
$\therefore \mathrm{AB}=\mathrm{AC}$
In $\triangle \mathrm{ABC}$:
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=\frac{180^{\circ}-50}{2}=65^{\circ}$
, \because EBCD is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{EBC})=180^{\circ}-115^{\circ}=65^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{EBC})=65^{\circ}$
$\therefore \overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABE}$
(Q.E.D.)

4
[a] Const: Draw $\overline{\mathrm{AM}}$
Proof:
X is the midpoint of $\overline{\mathrm{CB}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{BC}}$
$\therefore \mathrm{m}(\angle \mathrm{MXB})=90^{\circ}$

,$\because \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$
$\therefore \mathrm{m}(\angle \mathrm{MDB})=90^{\circ}$
From the quadrilateral BDMX :
$\therefore \mathrm{m}(\angle \mathrm{DMX})$
$=360^{\circ}-\left(90^{\circ}+90^{\circ}+56^{\circ}\right)=124^{\circ} \quad$ (First req.)
, $\because \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$
$\therefore \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \mathrm{AD}=\frac{1}{2} \mathrm{AB}=4 \mathrm{~cm}$.
In $\triangle \mathrm{ADM}: \because \mathrm{m}(\angle \mathrm{ADM})=90^{\circ}, \mathrm{AM}=\mathrm{r}=5 \mathrm{~cm}$.
$\therefore \mathrm{MD}=\sqrt{(\mathrm{AM})^{2}-(\mathrm{AD})^{2}}=\sqrt{25-16}=\sqrt{9}=3 \mathrm{~cm}$.
$\therefore \mathrm{DE}=5-3=2 \mathrm{~cm}$.
(Second req.)
[b] $\because \mathrm{m}(\angle \mathrm{AEC})=\frac{1}{2}[\mathrm{~m}(\overparen{\mathrm{AC}})-\mathrm{m}(\overparen{\mathrm{BD}})]$
$\therefore 30^{\circ}=\frac{1}{2}\left[80^{\circ}-\mathrm{m}(\overparen{\mathrm{BD}})\right]$
$\therefore 60^{\circ}=80^{\circ}-\mathrm{m}(\overparen{\mathrm{BD}})$
$\therefore \mathrm{m}(\overparen{B D})=80^{\circ}-60^{\circ}=20^{\circ}$
,$\because \overline{\mathrm{AB}}$ is a diameter $\therefore \mathrm{m}(\widehat{\mathrm{AB}})=180^{\circ}$
$\therefore \mathrm{m}(\overparen{\mathrm{CD}})=180^{\circ}-\left(80^{\circ}+20^{\circ}\right)=80^{\circ} \quad$ (The req.)

5
[a] $\because \overline{\mathrm{XY}} / / \overline{\mathrm{BC}}, \overleftrightarrow{\mathrm{AC}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{AYX})=\mathrm{m}(\angle \mathrm{ACB})$
(corresponding angles)
, $\because \mathrm{m}(\angle \mathrm{ACB})$ (inscribed)
$=\mathrm{m}(\angle \mathrm{BAD})$ (tangency)
$\therefore \mathrm{m}(\angle \mathrm{AYX})=\mathrm{m}(\angle \mathrm{XAD})$
$\therefore \overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the points A, X and Y
(Q.E.D.)
[b] $\because \overrightarrow{\mathrm{YB}}$ is a tangent, $\overline{\mathrm{AB}}$ is a diameter
$\therefore \overline{\mathrm{AB}} \perp \overrightarrow{\mathrm{YB}}$ $\therefore \mathrm{m}(\angle \mathrm{ABY})=90^{\circ}$
, $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{MXA})=90^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ABY})=\mathrm{m}(\angle \mathrm{AXY})=90^{\circ}$
and they are drawn on $\overline{\mathrm{AY}}$ and on one side of it
\therefore AXBY is a cyclic quadrilateral
(Q.E.D. 1)
, $\because \mathrm{m}(\angle \mathrm{ABY})=90^{\circ}$
\therefore The centre of the circle passing through the vertices of the quadrilateral AXBY is the midpoint of $\overline{\mathrm{AY}}$
(Q.E.D. 2)

17 El-Menia

1
$1 \mathrm{~d} \quad 2 \mathrm{a} \quad 3 \mathrm{a} \quad 4 \mathrm{c} \quad 5 \mathrm{c} \quad 6 \mathrm{c}$

2
[a] $\because \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$
$\therefore \mathrm{m}(\angle \mathrm{MDA})=90^{\circ}$
, $\because \mathrm{H}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MH}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{MHA})=90^{\circ}$
\therefore From the quadrilateral ADMH :
$\mathrm{m}(\angle \mathrm{DMH})=360^{\circ}-\left(90^{\circ}+90^{\circ}+60^{\circ}\right)=120^{\circ}$
(The req.)
[b] $\because \overrightarrow{\mathrm{XY}} / / \overleftrightarrow{\mathrm{BD}}, \overleftrightarrow{\mathrm{BC}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{DBY})=\mathrm{m}(\angle \mathrm{BYX})$ (alternate angles) (1)
, $\because \mathrm{m}(\angle \mathrm{A})$ (inscribed)
$=\mathrm{m}(\angle \mathrm{DBC})$ (tangency)
From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{A})=\mathrm{m}(\angle \mathrm{BYX})$
$\therefore \mathrm{AXYC}$ is a cyclic quadrilateral.

3
[a] $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}} \quad \therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$
,$\because \mathrm{Y}$ is the midpoint of $\overline{\mathrm{AC}} \quad \therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
, $\because \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{MX}=\mathrm{MY}$
, $\because M D=M E=r$
$\therefore \mathrm{XD}=\mathrm{YE}$
[b] $\because \mathrm{m}(\angle \mathrm{ABC})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{AMC})=\frac{1}{2} \times 150^{\circ}=75^{\circ}$ (inscribed and central angles subtended by $\overparen{A C}$)
, $\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{CDA})=180^{\circ}-75^{\circ}=105^{\circ} \quad$ (The req.)
4
[a] $\because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments
$\therefore \mathrm{AB}=\mathrm{AC}$
In $\triangle \mathrm{ABC}$:
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=\frac{180^{\circ}-40^{\circ}}{2}=70^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{D})$ (inscribed $)=\mathrm{m}(\angle \mathrm{ABC})$ (tangency) $=70^{\circ}$
(The req.)
[b] $\because \overline{\mathrm{BC}}$ is a diameter $\therefore \mathrm{m}(\angle \mathrm{BAC})=90^{\circ}$
,$\because \overline{\mathrm{ED}} \perp \overline{\mathrm{BC}} \quad \therefore \mathrm{m}(\angle \mathrm{EDB})=90^{\circ}$
, $\because \mathrm{m}(\angle \mathrm{BAE})+\mathrm{m}(\angle \mathrm{EDB})=90^{\circ}+90^{\circ}=180^{\circ}$
$\therefore \mathrm{ABDE}$ is a cyclic quadrilateral
(Q.E.D.)
[a] $\because \mathrm{m}(\overparen{\mathrm{AB}})=\mathrm{m}(\overparen{\mathrm{BC}})=\mathrm{m}(\overparen{\mathrm{AC}})=360^{\circ} \div 3=120^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})=\frac{1}{2} \mathrm{~m}(\overparen{\mathrm{BC}})=\frac{1}{2} \times 120^{\circ}=60^{\circ}$
(The req.)
[b] $\because \mathrm{m}(\angle \mathrm{BMC})=2 \mathrm{~m}(\angle \mathrm{BAC})=2 \times 30^{\circ}=60^{\circ}(1)$ (central and inscribed angles subtended by $\overparen{\mathrm{BC}}$)
, $\because \mathrm{MB}=\mathrm{MC}=\mathrm{r}$
From (1) and (2) :
$\therefore \Delta \mathrm{MBC}$ is an equilateral triangle.
(Q.E.D.)

1
1 a (2) 3 a 4 c 5 c 6 d
2
[a] $\because \mathrm{D}$ is the midpoint of $\overline{\mathrm{XY}}$
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{XY}} \quad \therefore \mathrm{m}(\angle \mathrm{MDX})=90^{\circ}$
,$\because E$ is the midpoint of $\overline{X Z}$
$\therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{XZ}}$
$\therefore \mathrm{m}(\angle \mathrm{MEX})=90^{\circ}$
, $\because M D=M E$
$\therefore \mathrm{XY}=\mathrm{XZ}$
From the quadrilateral XDME :
$\therefore \mathrm{m}(\angle \mathrm{X})=360^{\circ}-\left(90^{\circ}+90^{\circ}+120^{\circ}\right)=60^{\circ}$
From (1) and (2) :
$\therefore \triangle \mathrm{XYZ}$ is an equilateral triangle. (Q.E.D.)
[b] $\because \overline{\mathrm{AB}} / / \overline{\mathrm{CD}} \quad \therefore \mathrm{m}(\overparen{\mathrm{AC}})=\mathrm{m}(\overparen{\mathrm{BD}})$
,$\because \overline{\mathrm{AB}}$ is a diameter $\quad \therefore \mathrm{m}(\widehat{\mathrm{AB}})=180^{\circ}$
$\therefore \mathrm{m}(\widehat{\mathrm{AC}})=\frac{180^{\circ}-100^{\circ}}{2}=40^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{AEC})=\frac{1}{2} \mathrm{~m}(\overparen{\mathrm{AC}})=\frac{1}{2} \times 40^{\circ}=20^{\circ}$
(The req.)
3
[a] $\because \mathrm{m}(\angle \mathrm{BAD})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{BMD})=\frac{1}{2} \times 150^{\circ}=75^{\circ}$ (inscribed and central angles subtended by $\overparen{\mathrm{BD}}$)
,$\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{BCD})=180^{\circ}-75^{\circ}=105^{\circ} \quad$ (The req.)
[b] $\because \overline{\mathrm{XY}} / / \overline{\mathrm{BC}}, \overleftrightarrow{\mathrm{AC}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{AYX})=\mathrm{m}(\angle \mathrm{ACB})$ (corresponding angles)
,$\because \mathrm{m}(\angle \mathrm{ACB})$ (inscribed) $=\mathrm{m}(\angle \mathrm{BAD})$ (tangency)
$\therefore \mathrm{m}(\angle \mathrm{AYX})=\mathrm{m}(\angle \mathrm{XAD})$
$\therefore \overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the points A, X and Y
(Q.E.D.)

4
[a] $1 \mathrm{MN}=8+6=14 \mathrm{~cm}$.
(2) $\mathrm{MN}=8-6=2 \mathrm{~cm}$.
(3) $\mathrm{MN}=$ zero
[b] $\because \mathrm{m}(\angle \mathrm{BCD})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{M})$
(inscribed and central angles subtended by $\overparen{B D}$)
$\therefore \mathrm{m}(\angle \mathrm{BCD})=\frac{1}{2} \times 130^{\circ}=65^{\circ}$
$\because \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}, \overleftrightarrow{\mathrm{BC}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{BCD})=65^{\circ}$
(alternate angles)
$\because \overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent-segments to the circle M
$\therefore \mathrm{AB}=\mathrm{AC}$
In $\triangle \mathrm{ABC}: \therefore \mathrm{m}(\angle \mathrm{ACB})=\mathrm{m}(\angle \mathrm{ABC})=65^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-2 \times 65^{\circ}=50^{\circ} \quad$ (The req.)

5
[a] $\because \overline{\mathrm{BC}}$ is a tangent-segment to the circle
$\therefore \overline{\mathrm{MB}} \perp \overline{\mathrm{BC}} \quad \therefore \mathrm{m}(\angle \mathrm{MBC})=90^{\circ}$
,$\because \overline{\mathrm{ME}} \perp \overline{\mathrm{AD}} \quad \therefore \mathrm{m}(\angle \mathrm{MEC})=90^{\circ}$
,$\because \mathrm{m}(\angle \mathrm{MBC})+\mathrm{m}(\angle \mathrm{MEC})=90^{\circ}+90^{\circ}=180^{\circ}$
$\therefore \mathrm{EMBC}$ is a cyclic quadrilateral (First req.)
, $\because \mathrm{AB}=2 \mathrm{AM}=2 \times 4=8 \mathrm{~cm}$.
In $\triangle \mathrm{ABC}: \because \mathrm{m}(\angle \mathrm{ABC})=90^{\circ}$
$\therefore(A C)^{2}=(A B)^{2}+(B C)^{2}=(8)^{2}+(6)^{2}=100$
$\therefore A C=\sqrt{100}=10 \mathrm{~cm}$.
(Second req.)
[b] $\because \mathrm{m}(\overparen{\mathrm{AD}})=\mathrm{m}(\overparen{\mathrm{BE}})$
Adding $\mathrm{m}(\overparen{\mathrm{ED}})$ to both sides :
$\therefore \mathrm{m}(\widehat{\mathrm{AE}})=\mathrm{m}(\widehat{\mathrm{BD}})$
$\therefore \mathrm{m}(\angle \mathrm{EBA})=\mathrm{m}(\angle \mathrm{DAB})$
In $\triangle \mathrm{ABC}$:
$\therefore \mathrm{AC}=\mathrm{BC}$
(Q.E.D.)

19 Souhas

(1) 2 c 3 (4) a (5)

2
[a] $\because \overline{\mathrm{XY}} / / \overline{\mathrm{BC}}, \overleftrightarrow{\mathrm{AB}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{AXY})=\mathrm{m}(\angle \mathrm{ABC})$ (corresponding angles)
,$\because \mathrm{m}(\angle \mathrm{ABC})$ (inscribed) $=\mathrm{m}(\angle \mathrm{CAD})$ (tangency)
$\therefore \mathrm{m}(\angle \mathrm{AXY})=\mathrm{m}(\angle \mathrm{YAD})$
$\therefore \overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the points A, X and Y
(Q.E.D.)
[b] In $\triangle M A B: \because M A=M B=r$
$\therefore \mathrm{m}(\angle \mathrm{MAB})=\mathrm{m}(\angle \mathrm{MBA})=50^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{AMB})=180^{\circ}-2 \times 50^{\circ}=80^{\circ}$
$\therefore \mathrm{m}(\overparen{\mathrm{AB}})=\mathrm{m}(\angle \mathrm{AMB})=80^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ACB})=\frac{1}{2} \mathrm{~m}(\widehat{\mathrm{AB}})=\frac{1}{2} \times 80^{\circ}$
$=40^{\circ} \quad$ (First req.)
, $\mathrm{m}(\widehat{\mathrm{ACB}})=360^{\circ}-80^{\circ}=280^{\circ} \quad$ (Second req.)
3
[a] $\because \overrightarrow{\mathrm{MN}}$ is the line of centres
, $\overline{\mathrm{AB}}$ is a common chord
$\therefore \overleftrightarrow{\mathrm{MN}}$ is the axis of symmetry of $\overline{\mathrm{AB}}$
,$\because D \in \overleftrightarrow{M N}$
$\therefore A D=B D$
$, \because \overline{\mathrm{MX}} \perp \overline{\mathrm{AD}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{BD}}$
$\therefore \mathrm{MX}=\mathrm{MY}$
[b] $\because \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}$
$\therefore \mathrm{m}(\widehat{\mathrm{AC}})=\mathrm{m}(\widehat{\mathrm{BD}})$
, $\because \overline{\mathrm{AB}}$ is a diameter
$\therefore \mathrm{m}(\widehat{\mathrm{AB}})=180^{\circ}$
$\therefore \mathrm{m}(\overparen{\mathrm{BD}})=\frac{180^{\circ}-80^{\circ}}{2}=50^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{DEB})=\frac{1}{2} \mathrm{~m}(\widehat{\mathrm{BD}})=\frac{1}{2} \times 50^{\circ}=25^{\circ}$
, $\mathrm{m}(\angle \mathrm{AWE})=\frac{1}{2}[\mathrm{~m}(\overparen{\mathrm{AE}})+\mathrm{m}(\overparen{\mathrm{BD}})]$

$$
=\frac{1}{2}\left(100^{\circ}+50^{\circ}\right)=75^{\circ} \text { (The req.) }
$$

4
[a] $\because \mathrm{XYZD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{Z})=\mathrm{m}(\angle \mathrm{WXD})=80^{\circ}$
(First req.)
,$\because \mathrm{m}(\angle \mathrm{Y})+\mathrm{m}(\angle \mathrm{D})=180^{\circ}$
, $\mathrm{m}(\angle \mathrm{Y})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{D})$
$\therefore \frac{1}{2} \mathrm{~m}(\angle \mathrm{D})+\mathrm{m}(\angle \mathrm{D})=180^{\circ}$
$\therefore \frac{3}{2} \mathrm{~m}(\angle \mathrm{D})=180^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{D})=120^{\circ}$
(Second req.)
[b] $\because \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$
$\therefore \mathrm{m}(\angle \mathrm{MDA})=90^{\circ}$
,$\because \mathrm{E}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{MEA})=90^{\circ}$
From the quadrilateral ADME :

$$
\begin{aligned}
& \therefore \mathrm{m}(\angle \mathrm{XMY})=360^{\circ}-\left(90^{\circ}+90^{\circ}+60^{\circ}\right) \\
&=120^{\circ} \\
& \because \mathrm{AB}=\mathrm{AC}, \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{ME}} \perp \frac{\quad(\text { First req.) }}{\mathrm{AC}} \\
& \therefore \mathrm{MD}=\mathrm{ME} \\
&, \because \mathrm{MX}=\mathrm{MY}=\mathrm{r}
\end{aligned}
$$

$$
\therefore \mathrm{XD}=\mathrm{YE}
$$

(Second req.)

5

[a] $\because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments
$\therefore \mathrm{AB}=\mathrm{AC}$
In $\triangle \mathrm{ABC}: \therefore \mathrm{m}(\angle \mathrm{ACB})=\mathrm{m}(\angle \mathrm{ABC})$
, $\overrightarrow{\mathrm{AM}}$ bisects $\angle \mathrm{BAC}$
$\therefore \mathrm{m}(\angle \mathrm{BAC})=2 \times 20^{\circ}=40^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ACB})=\frac{180^{\circ}-40^{\circ}}{2}=70^{\circ}$
(First req.)
$\therefore \mathrm{m}(\angle \mathrm{BEC})$ (inscribed) $=\mathrm{m}(\angle \mathrm{ACB})$ (tangency)

$$
=70^{\circ} \quad \text { (Second req.) }
$$

[b] In $\triangle \mathrm{ADC}: \because \mathrm{AD}=\mathrm{DC}$
$\therefore \mathrm{m}(\angle \mathrm{DAC})=\mathrm{m}(\angle \mathrm{DCA})=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ADC})=180^{\circ}-2 \times 30^{\circ}=120^{\circ}$
, $\because \triangle \mathrm{ABC}$ is an equilateral triangle
$\therefore \mathrm{m}(\angle \mathrm{ABC})=60^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ADC})+\mathrm{m}(\angle \mathrm{ABC})=120^{\circ}+60^{\circ}=180^{\circ}$
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral.
(Q.E.D.)

20 Qena

(1) b (2) 3 c (4) 5 a (6)

2
[a] \because The arc is opposite to an inscribed angle of measure 45°
\therefore The measure of the arc $=2 \times 45^{\circ}=90^{\circ}$
, the length of the arc $=\frac{90^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times 7$

$$
=11 \mathrm{~cm} . \quad \text { (The req.) }
$$

[b] $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{MXA})=90^{\circ}$
,$\because \mathrm{Y}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}} \quad \therefore \mathrm{m}(\angle \mathrm{MYA})=90^{\circ}$
From the quadrilateral AXMY :
$\therefore \mathrm{m}(\angle \mathrm{DME})=360^{\circ}-\left(90^{\circ}+90^{\circ}+70^{\circ}\right)=110^{\circ}$
(First req.)
,$\because A B=A C \quad \therefore M X=M Y$
,$\because \mathrm{MD}=\mathrm{ME}=\mathrm{r}$
$\therefore \mathrm{XD}=\mathrm{YE}$ (Second req.)

3

[a] $\because \overline{\mathrm{DE}} / / \overline{\mathrm{BC}}$
$\therefore \mathrm{m}(\widehat{\mathrm{BD}})=\mathrm{m}(\widehat{\mathrm{CE}})$
$\therefore \mathrm{m}(\angle \mathrm{DAB})=\mathrm{m}(\angle \mathrm{EAC})$
Adding $\mathrm{m}(\angle \mathrm{BAC})$ to both sides :
$\therefore \mathrm{m}(\angle \mathrm{DAC})=\mathrm{m}(\angle \mathrm{BAE})$
[b] $\because \mathrm{m}(\overparen{A C})=2 \mathrm{~m}(\angle \mathrm{ABC})=2 \times 40^{\circ}=80^{\circ}$
,$\because \mathrm{D}$ is the midpoint of $\overparen{\mathrm{AC}}$
$\therefore \mathrm{m}(\widehat{\mathrm{AD}})=\mathrm{m}(\widehat{\mathrm{DC}})=40^{\circ}$
,$\because \overline{\mathrm{AB}}$ is a diameter $\therefore \mathrm{m}(\widehat{\mathrm{AB}})=180^{\circ}$
$\therefore \mathrm{m}(\overparen{\mathrm{DCB}})=180^{\circ}-40^{\circ}=140^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{DAB})=\frac{1}{2} \mathrm{~m}(\overparen{\mathrm{DCB}})=\frac{1}{2} \times 140^{\circ}=70^{\circ}$
(The req.)
[a] $\because \overline{\mathrm{AB}}$ is a diameter $\therefore \mathrm{m}(\angle \mathrm{ACB})=90^{\circ}$
,$\because \overrightarrow{\mathrm{DE}} \perp \overrightarrow{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{ADE})=90^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ACE})=\mathrm{m}(\angle \mathrm{ADE})=90^{\circ}$
and they are drawn on $\overline{\mathrm{AE}}$ and on one side of it
\therefore ACDE is a cyclic quadrilateral. (Q.E.D.)
[b] In $\triangle \mathrm{ABC}$:
$\because m(\angle B A C)=90^{\circ}, A C=\frac{1}{2} B C$
$\therefore \mathrm{m}(\angle \mathrm{B})=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{C})=180^{\circ}-\left(90^{\circ}+30^{\circ}\right)=60^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{BAD})=60^{\circ}$
$\therefore \overrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the vertices of $\triangle A B C$
(Q.E.D.)

5

[a] $\because m(\angle B C D)=\frac{1}{2} m(\angle M)$
(inscribed and central angles subtended by $\overparen{B D}$)
$\therefore \mathrm{m}(\angle \mathrm{BCD})=\frac{1}{2} \times 130^{\circ}=65^{\circ}$
$, \because \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}, \overleftrightarrow{\mathrm{BC}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{BCD})=65^{\circ}$
(alternate angles)
,$\because \overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent-segments to the circle M
$\therefore \mathrm{AB}=\mathrm{AC}$
In $\triangle \mathrm{ABC}: \therefore \mathrm{m}(\angle \mathrm{ACB})=\mathrm{m}(\angle \mathrm{ABC})=65^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ACB})=\mathrm{m}(\angle \mathrm{BCD})=65^{\circ}$
$\therefore \overrightarrow{\mathrm{CB}}$ bisects $\angle \mathrm{ACD}$
, $\mathrm{m}(\angle \mathrm{A})=180^{\circ}-2 \times 65^{\circ}=50^{\circ} \quad$ (Second req.)
[b] $\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{D})=\mathrm{m}(\angle \mathrm{ABE})=100^{\circ}$
In $\triangle \mathrm{ACD}$:
$\therefore \mathrm{m}(\angle \mathrm{ACD})=180^{\circ}-\left(100^{\circ}+40^{\circ}\right)=40^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CAD})=\mathrm{m}(\angle \mathrm{ACD})$
$\therefore \mathrm{m}(\overparen{\mathrm{CD}})=\mathrm{m}(\widehat{\mathrm{AD}})$
21 Luxor

1
1 b 2 d (3) 4 c (5a 6 d

2
[a] $\because \overline{\mathrm{AB}}$ is a tangent-segment to the circle
$\therefore \overline{\mathrm{MA}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{MAB})=90^{\circ}$
\therefore In \triangle MAB which is right at A :
$(M B)^{2}=(M A)^{2}+(A B)^{2}=(5)^{2}+(12)^{2}=169$
$\therefore M B=\sqrt{169}=13 \mathrm{~cm}$.
$\therefore \mathrm{BD}=13-5=8 \mathrm{~cm}$.
(The req.)
[b]

\therefore We can draw two circles.

3
[a] \because The two circles are touching internally
$\therefore \mathrm{MN}=10-6=4 \mathrm{~cm}$.
,$\because \overrightarrow{\mathrm{MN}} \perp \overrightarrow{\mathrm{AB}}$
\therefore The area of $\triangle \mathrm{BMN}=\frac{1}{2} \times \mathrm{MN} \times \mathrm{AB}$
$\therefore 24=\frac{1}{2} \times 4 \times \mathrm{AB}$
$\therefore A B=12 \mathrm{~cm}$.
(The req.)
[b] $\because \overline{\mathrm{AB}} / / \overline{\mathrm{CD}} \quad \therefore \mathrm{m}(\widehat{\mathrm{AC}})=\mathrm{m}(\overparen{\mathrm{BD}})$
$\therefore \mathrm{m}(\angle \mathrm{AEC})=\mathrm{m}(\angle \mathrm{BED})$
Adding $\mathrm{m}(\angle \mathrm{CED})$ to both sides :
$\therefore \mathrm{m}(\angle \mathrm{AED})=\mathrm{m}(\angle \mathrm{BEC})$
(Q.E.D.)

4
[a] $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}} \quad \therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$
$, \because \overrightarrow{\mathrm{MY}} \perp \overline{\mathrm{AC}}, \mathrm{AB}=\mathrm{AC} \quad \therefore \mathrm{MX}=\mathrm{MY}$
,$\because M D=M E=r \quad \therefore X D=Y E$
(Q.E.D. 1)

In $\triangle \mathrm{XMY}: \because \mathrm{MX}=\mathrm{MY}$
$\therefore \mathrm{m}(\angle \mathrm{MXY})=\mathrm{m}(\angle \mathrm{MYX})$
,$\because m(\angle M X B)=m(\angle M Y C)=90^{\circ}$
By adding: $\therefore \mathrm{m}(\angle \mathrm{YXB})=\mathrm{m}(\angle \mathrm{XYC})$
(Q.E.D. 2)
[b] In $\triangle A C D: ~ \because A D=C D$
$\therefore \mathrm{m}(\angle \mathrm{DAC})=\mathrm{m}(\angle \mathrm{DCA})=40^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{D})=180^{\circ}-2 \times 40^{\circ}=100^{\circ}$
,$\because m(\angle B)+m(\angle D)=80^{\circ}+100^{\circ}=180^{\circ}$
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral.
(Q.E.D.)

5

[a] $\because \overline{\mathrm{XY}} / / \overleftrightarrow{\mathrm{BD}}, \overleftrightarrow{\mathrm{AB}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{DBX})=\mathrm{m}(\angle \mathrm{YXB})$ (alternate angles) (1)
, $\because \mathrm{m}(\angle \mathrm{C})$ (inscribed)

$$
\begin{equation*}
=\mathrm{m}(\angle \mathrm{ABD}) \text { (tangency) } \tag{2}
\end{equation*}
$$

From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{YXB})$
$\therefore \mathrm{AXYC}$ is a cyclic quadrilateral.
(Q.E.D.)
[b] $\because \mathrm{BCDE}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{CBE})+\mathrm{m}(\angle \mathrm{D})=180^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CBE})=180^{\circ}-125^{\circ}=55^{\circ}$
$, \because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to the circle
$\therefore \mathrm{AB}=\mathrm{AC}$
\therefore In $\triangle \mathrm{ABC}$:
$\mathrm{m}(\angle \mathrm{ACB})=\mathrm{m}(\angle \mathrm{ABC})=\frac{180^{\circ}-70^{\circ}}{2}=55^{\circ}$
, $\because \mathrm{m}(\angle \mathrm{BEC})$ (inscribed)

$$
=\mathrm{m}(\angle \mathrm{ACB}) \text { (tangency) }=55^{\circ}
$$

\therefore In $\triangle \mathrm{CBE}: \mathrm{m}(\angle \mathrm{CBE})=\mathrm{m}(\angle \mathrm{BEC})=55^{\circ}$
$\therefore \mathrm{BC}=\mathrm{CE}$
(Q.E.D. 1)
, $\because \mathrm{m}(\angle \mathrm{CBE})=\mathrm{m}(\angle \mathrm{ACB})=55^{\circ}$
and they are alternate angles
$\therefore \overrightarrow{\mathrm{AC}} / / \overline{\mathrm{BE}}$
(Q.E.D. 2)

22 Aswan

1
$\begin{array}{llll}1 \mathrm{c} & 2 \mathrm{~d} \quad 3 \mathrm{a} & 4 \mathrm{~b} \quad 5 \mathrm{c} \quad 6 \mathrm{~d}\end{array}$
2
[a] $\because \mathrm{Y}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
, $\because \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}, \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{MY}=\mathrm{MX}$
, $\because M E=M D=r$
$\therefore \mathrm{YE}=\mathrm{XD}$
[b] $\because \overrightarrow{\mathrm{CD}}$ is a tangent to the circle
$\therefore \overrightarrow{\mathrm{MD}} \perp \overrightarrow{\mathrm{CD}} \quad \therefore \mathrm{m}(\angle \mathrm{MDC})=90^{\circ}$
In $\triangle \mathrm{MCD}$:
$\therefore \mathrm{m}(\angle \mathrm{CMD})=180^{\circ}-\left(90^{\circ}+40^{\circ}\right)=50^{\circ}$
$\therefore \mathrm{m}(\overparen{\mathrm{AD}})=\mathrm{m}(\angle \mathrm{AMD})=180^{\circ}-50^{\circ}=130^{\circ}$
(The req.)

3
[a] $\because \overline{\mathrm{AB}}$ is a tangent-segment to the circle
$\therefore \overline{\mathrm{MA}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{MAB})=90^{\circ}$
\therefore In $\triangle \mathrm{MAB}$ which is right at A :
$(M B)^{2}=(M A)^{2}+(A B)^{2}=6^{2}+8^{2}=100$
$\therefore M B=\sqrt{100}=10 \mathrm{~cm}$.
$\therefore \mathrm{DB}=10-6=4 \mathrm{~cm}$.
(The req.)
[b] $\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{D})=\mathrm{m}(\angle \mathrm{ABE})=100^{\circ}$
In $\triangle \mathrm{ACD}$:
$\therefore \mathrm{m}(\angle \mathrm{DCA})=180^{\circ}-\left(100^{\circ}+40^{\circ}\right)=40^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{DCA})=\mathrm{m}(\angle \mathrm{DAC})$
$\therefore \mathrm{m}(\overparen{\mathrm{DA}})=\mathrm{m}(\overparen{\mathrm{DC}})$
(Q.E.D.)

4
[a] $\because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments
$\therefore \mathrm{AB}=\mathrm{AC}$
In $\triangle \mathrm{ABC}$:
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=\frac{180^{\circ}-50^{\circ}}{2}=65^{\circ}$
(First req.)
$\therefore \mathrm{m}(\angle \mathrm{BMC})($ central $)=2 \mathrm{~m}(\angle \mathrm{ABC})$ (tangency)

$$
=2 \times 65^{\circ}=130^{\circ}
$$

(Second req.)
[b] $\because m(\angle \mathrm{D})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{AMB})$
(inscribed and central angles subtended by $\overparen{A B}$)
$\therefore \mathrm{m}(\angle \mathrm{D})=\frac{1}{2} \times 140^{\circ}=70^{\circ}$
$, \because \overline{\mathrm{AC}} / / \overline{\mathrm{DB}}, \stackrel{\mathrm{AD}}{\mathrm{AD}}$ a transversal
$\therefore \mathrm{m}(\angle \mathrm{DAC})+\mathrm{m}(\angle \mathrm{D})=180^{\circ}$
(two interior angles in the same side of the transversal)
$\therefore \mathrm{m}(\angle \mathrm{CAD})=180^{\circ}-70^{\circ}=110^{\circ} \quad$ (The req.)
5
[a] $\because \angle$ DEC is an exterior angle of $\triangle \mathrm{BEC}$
$\therefore \mathrm{m}(\angle \mathrm{ECB})=80^{\circ}-40^{\circ}=40^{\circ}$
, $\because \overline{\mathrm{AD}} / / \overline{\mathrm{BC}}, \stackrel{\mathrm{AC}}{ }$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{DAC})=\mathrm{m}(\angle \mathrm{ACB})=40^{\circ}$
(alternate angles)
$\therefore \mathrm{m}(\angle \mathrm{DBC})=\mathrm{m}(\angle \mathrm{DAC})=40^{\circ}$
and they are drawn on $\overline{\mathrm{DC}}$ and on one side of it
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral.
(Q.E.D.)
[b] $\because \overline{\mathrm{DE}} / / \overline{\mathrm{BC}}, \overleftrightarrow{\mathrm{AC}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{AED})=\mathrm{m}(\angle \mathrm{ACB})$
(corresponding angles)
, $\because \mathrm{m}(\angle \mathrm{ACB})$ (inscribed) $=\mathrm{m}(\angle \mathrm{XAB})$
(tangency)
$\therefore \mathrm{m}(\angle \mathrm{AED})=\mathrm{m}(\angle \mathrm{XAB})$
$\therefore \overrightarrow{\mathrm{AX}}$ is a tangent to the circle passing through the points A, D and E
(Q.E.D.)

23 New Valley

1
(1) 2 c 3 c (4) 5 b (6 a

2
[a] $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{MXA})=90^{\circ}$
,$\because \mathrm{Y}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{MYA})=90^{\circ}$
From the quadrilateral AXMY :
$\therefore \mathrm{m}(\angle \mathrm{DME})=360^{\circ}-\left(90^{\circ}+90^{\circ}+70^{\circ}\right)=110^{\circ}$
(First req.)
$, \because \mathrm{AB}=\mathrm{AC}, \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{MX}=\mathrm{MY}$
,$\because M D=M E=r$
$\therefore \mathrm{XD}=\mathrm{YE}$
(Second req.)
[b] $\because \overline{\mathrm{DE}} / / \overline{\mathrm{BC}}$
$\therefore \mathrm{m}(\widehat{\mathrm{BD}})=\mathrm{m} \overparen{(\mathrm{EC})}$
$\therefore \mathrm{m}(\angle \mathrm{DAB})=\mathrm{m}(\angle \mathrm{EAC})$
Adding $m(\angle B A C)$ to both sides :
$\therefore \mathrm{m}(\angle \mathrm{DAC})=\mathrm{m}(\angle \mathrm{BAE})$

3

[a] State by yourself.
[b] In $\triangle \mathrm{ABD}: \because \mathrm{AB}=\mathrm{AD}$
$\therefore \mathrm{m}(\angle \mathrm{ABD})=\mathrm{m}(\angle \mathrm{ADB})=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BAD})=180^{\circ}-2 \times 30^{\circ}=120^{\circ}$
,$\because \mathrm{m}(\angle \mathrm{BAD})+\mathrm{m}(\angle \mathrm{C})=120^{\circ}+60^{\circ}=180^{\circ}$
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral.
(Q.E.D.)
[a] $\because \overline{\mathrm{AD}}, \overline{\mathrm{AF}}$ are two tangent-segments to the circle $\therefore \mathrm{AD}=\mathrm{AF}=5 \mathrm{~cm}$.
$, \because \overline{\mathrm{BD}}, \overline{\mathrm{BE}}$ are two tangent-segments to the circle
$\therefore \mathrm{BD}=\mathrm{BE}=4 \mathrm{~cm}$.
$, \because \overline{\mathrm{CE}}, \overline{\mathrm{CF}}$ are two tangent-segments to the circle
$\therefore \mathrm{CE}=\mathrm{CF}=3 \mathrm{~cm}$.
\therefore The perimeter of $\triangle \mathrm{ABC}=5+5+4+4+3+3$
$=24 \mathrm{~cm}$. (The req.)
[b] $\because m(\angle A C B)=\frac{1}{2} m(\angle A M B)$
(inscribed and central angles subtended by $\overparen{A B}$)
$\therefore \mathrm{m}(\angle \mathrm{ACB})=\frac{1}{2} \times 120^{\circ}=60^{\circ}$
,$\because \overleftrightarrow{\mathrm{CD}} / / \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\overparen{\mathrm{AC}})=\mathrm{m}(\overparen{\mathrm{BC}})$
$\therefore \mathrm{AC}=\mathrm{BC}$
From (1) and (2) :
$\therefore \triangle \mathrm{CAB}$ is an equilateral triangle.
(Q.E.D.)

5

[a] $\because \mathrm{m}(\angle \mathrm{A})=\frac{1}{2}[\mathrm{~m}(\overparen{\mathrm{HC}})-\mathrm{m}(\overparen{\mathrm{BD}})]$
$\therefore 30^{\circ}=\frac{1}{2}\left[120^{\circ}-\mathrm{m}(\overparen{\mathrm{BD}})\right]$
$\therefore 60^{\circ}=120^{\circ}-\mathrm{m}(\overparen{B D})$
$\therefore \mathrm{m}(\overparen{B D})=120^{\circ}-60^{\circ}=60^{\circ} \quad$ (First req.)
,$\because \mathrm{m}(\overparen{\mathrm{BC}})=\mathrm{m}(\overparen{\mathrm{DH}})$
Adding $\mathrm{m}(\widehat{\mathrm{BD}})$ to both sides :
$\therefore \mathrm{m}(\overparen{\mathrm{CD}})=\mathrm{m}(\overparen{\mathrm{HB}}) \quad \therefore \mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{H})$
In $\triangle \mathrm{ACH}: \therefore \mathrm{AC}=\mathrm{AH}$
,$\because \mathrm{m}(\overparen{\mathrm{BC}})=\mathrm{m}(\overparen{\mathrm{DH}})$
$\therefore \mathrm{BC}=\mathrm{DH}$
Subtracting (2) from (1) :
$\therefore \mathrm{AB}=\mathrm{AD}$
(Second req.)
[b] $\because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments to the circle
$\therefore \mathrm{AB}=\mathrm{AC}$
\therefore In $\triangle \mathrm{ABC}$:
$\mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=\frac{180^{\circ}-50^{\circ}}{2}=65^{\circ}$
,\because EBCD is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{EBC})=180^{\circ}-115^{\circ}=65^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{EBC})=\mathrm{m}(\angle \mathrm{ABC})=65^{\circ}$
$\therefore \overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABE}$
(Q.E.D. 1)
, $\because \mathrm{m}(\angle \mathrm{BEC})$ (inscribed)
$=\mathrm{m}(\angle \mathrm{ABC})($ tangency $)=65^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{EBC})=\mathrm{m}(\angle \mathrm{BEC})=65^{\circ}$
In $\triangle \mathrm{BCE}: \therefore \mathrm{CB}=\mathrm{CE}$
(Q.E.D. 2)

24 South Sinai

1

$\therefore \mathrm{DX}=\mathrm{EY}$
(Q.E.D.)

3
[a] In $\triangle \mathrm{ADE}: \because \mathrm{AE}=\mathrm{DE}$
$\therefore \mathrm{m}(\angle \mathrm{BAD})=\mathrm{m}(\angle \mathrm{ADC})$
$\therefore \mathrm{m}(\overparen{B D})=\mathrm{m}(\overparen{A C})$
$\therefore \mathrm{m}(\angle \mathrm{BAD})=\mathrm{m}(\angle \mathrm{ABC})$
and they are alternate angles
$\therefore \overline{\mathrm{AD}} / / \overline{\mathrm{CB}}$
(Q.E.D.)
[b] In $\triangle \mathrm{ACD}: \because \mathrm{AD}=\mathrm{CD}$
$\therefore \mathrm{m}(\angle \mathrm{DCA})=\mathrm{m}(\angle \mathrm{DAC})=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{D})=180^{\circ}-2 \times 30^{\circ}=120^{\circ}$
,$\because m(\angle B)+m(\angle D)=60^{\circ}+120^{\circ}=180^{\circ}$
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral.
(Q.E.D.)

4

[a] $\because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to the circle
$\therefore \mathrm{AB}=\mathrm{AC}$
\therefore In $\triangle \mathrm{ABC}$:
$\mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=\frac{180^{\circ}-50^{\circ}}{2}=65^{\circ}$
, \because EBCD is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{EBC})=180^{\circ}-115^{\circ}=65^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{EBC})=\mathrm{m}(\angle \mathrm{ABC})=65^{\circ}$
$\therefore \overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABE}$
(Q.E.D.)
[b] $\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{ADC})=\mathrm{m}(\angle \mathrm{ABE})=85^{\circ}$
,$\because \mathrm{m}(\angle \mathrm{BDC})=\frac{1}{2} \mathrm{~m}(\overparen{B C})=\frac{1}{2} \times 110^{\circ}=55^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ADB})=85^{\circ}-55^{\circ}=30^{\circ} \quad$ (The req.)
5
[a] $\because \mathrm{m}(\overparen{\mathrm{BD}})=\mathrm{m}(\angle \mathrm{BMD})=40^{\circ}$
, $\mathrm{m}\left(\overparen{(\mathrm{CE})}=\mathrm{m}(\angle \mathrm{CME})=100^{\circ}\right.$

$$
\begin{aligned}
\therefore \mathrm{m}(\angle \mathrm{~A}) & =\frac{1}{2}[\mathrm{~m}(\overparen{\mathrm{CE}})-\mathrm{m}(\overparen{(\mathrm{BD}})] \\
& =\frac{1}{2}\left(100^{\circ}-40^{\circ}\right)=30^{\circ} \quad \text { (The req.) }
\end{aligned}
$$

[b] $\because \overline{\mathrm{XY}} / / \overleftrightarrow{\mathrm{AD}}, \overleftrightarrow{\mathrm{AC}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{DAY})=\mathrm{m}(\angle \mathrm{AYX})$ (alternate angles)
, $\because \mathrm{m}(\angle \mathrm{B})$ (inscribed)
$=\mathrm{m}(\angle \mathrm{DAC})$ (tangency)
From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{AYX})$
$\therefore \mathrm{XYCB}$ is a cyclic quadrilateral.

25 North Sinai

(1) 2 b (3) 4 c (5) 6 d

2
[a] $\because \mathrm{D}$ is the midpoint of $\overline{\mathrm{AE}}$
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AE}} \quad \therefore \mathrm{m}(\angle \mathrm{CDM})=90^{\circ}$
, $\because \overline{\mathrm{BC}}$ is a tangent-segment
$\therefore \overline{\mathrm{MB}} \perp \overline{\mathrm{BC}} \quad \therefore \mathrm{m}(\angle \mathrm{CBM})=90^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CDM})+\mathrm{m}(\angle \mathrm{CBM})=90^{\circ}+90^{\circ}=180^{\circ}$
$\therefore \mathrm{BCDM}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{DMA})=\mathrm{m}(\angle \mathrm{C})=45^{\circ}$
In $\triangle \mathrm{ADM}: \therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-\left(90^{\circ}+45^{\circ}\right)=45^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{DMA})=\mathrm{m}(\angle \mathrm{A})$
$\therefore \mathrm{MD}=\mathrm{AD}$
[b] $\mathrm{m}(\angle \mathrm{A})=\frac{1}{2}[\mathrm{~m} \overparen{(\mathrm{CE})}-\mathrm{m}(\widehat{\mathrm{BD}})]$

$$
=\frac{1}{2}\left(140^{\circ}-60^{\circ}\right)=40^{\circ} \quad \text { (First req.) }
$$

, $\mathrm{m} \overparen{(\mathrm{BC})}=\mathrm{m} \overparen{(\mathrm{ED})}=\frac{360^{\circ}-\left(140^{\circ}+60^{\circ}\right)}{2}=80^{\circ}$
(Second req.)

3

[a] $\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{BAD})=\mathrm{m}(\angle \mathrm{DCX})=100^{\circ}$
In $\triangle \mathrm{ABD}$:
$\therefore \mathrm{m}(\angle \mathrm{ADB})=180^{\circ}-\left(100^{\circ}+40^{\circ}\right)=40^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ABD})=\mathrm{m}(\angle \mathrm{ADB})$
$\therefore \mathrm{AB}=\mathrm{AD}$
(Q.E.D.)
[b] In $\triangle \mathrm{ABC}: \because \mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{C})$
$\therefore \mathrm{AB}=\mathrm{AC}$
,$\because \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}} \quad, \because \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{MD}=\mathrm{ME}$
(Q.E.D.)

4

[a] $\because \overline{\mathrm{DE}} / / \overline{\mathrm{BC}}, \overleftrightarrow{\mathrm{AC}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{AED})=\mathrm{m}(\angle \mathrm{C})$ (corresponding angles)
,$\because \mathrm{m}(\angle \mathrm{C})$ (inscribed) $=\mathrm{m}(\angle \mathrm{BAX})$ (tangency)
$\therefore \mathrm{m}(\angle \mathrm{AED})=\mathrm{m}(\angle \mathrm{DAX})$
$\therefore \overleftrightarrow{\mathrm{AX}}$ is a tangent to the circle passing through the vertices of $\triangle A D E$
(Q.E.D.)
[b] $\because \mathrm{m}(\angle \mathrm{BMC})=2 \mathrm{~m}(\angle \mathrm{BAC})=2 \times 30^{\circ}=60^{\circ}$ (1)
(central and inscribed angles subtended by $\overparen{B C}$)
, $\because \mathrm{MB}=\mathrm{MC}=\mathrm{r}$
From (1) and (2) :
$\therefore \triangle \mathrm{MBC}$ is an equilateral triangle.
(Q.E.D.)

5

[a] $\because \overline{\mathrm{AD}}, \overline{\mathrm{AF}}$ are two tangent-segments to the circle
$\therefore \mathrm{AD}=\mathrm{AF}=5 \mathrm{~cm}$.
$, \because \overline{\mathrm{BD}}, \overline{\mathrm{BE}}$ are two tangent-segments to the circle
$\therefore \mathrm{BD}=\mathrm{BE}=4 \mathrm{~cm}$.
$, \because \overline{\mathrm{CE}}, \overline{\mathrm{CF}}$ are two tangent-segments to the circle
$\therefore \mathrm{CE}=\mathrm{CF}=3 \mathrm{~cm}$.
\therefore The perimeter of $\triangle \mathrm{ABC}=5+5+4+4+3+3$ $=24 \mathrm{~cm}$. (The req.)
[b] $\because \overrightarrow{\mathrm{CB}}$ is a tangent
$\therefore \mathrm{m}(\angle \mathrm{CBE})=\frac{1}{2} \mathrm{~m} \overparen{(\mathrm{BE})}$
,$\because \mathrm{m}(\angle \mathrm{EAF})=\frac{1}{2} \mathrm{~m} \overparen{(\mathrm{EF})}$
,\because E is the midpoint of $\overparen{B F}$
$\therefore \mathrm{m} \overparen{(\mathrm{BE})}=\mathrm{m} \overparen{(\mathrm{EF})}$
$\therefore \mathrm{m}(\angle \mathrm{CBD})=\mathrm{m}(\angle \mathrm{CAD})$
and they are drawn on $\overline{\mathrm{CD}}$ and on one side of it
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral.
(Q.E.D.)

26 Red Sea

1

2
[a] $\because \mathrm{E}$ is the midpoint of $\overline{\mathrm{CD}} \quad \therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{CD}}$
$\therefore \mathrm{m}(\angle \mathrm{BEM})=90^{\circ}$
,$\because \overline{\mathrm{AB}}$ is a tangent-segment to the circle
$\therefore \overline{\mathrm{MA}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{MAB})=90^{\circ}$
From the quadrilateral ABEM :

$$
\begin{aligned}
\therefore \mathrm{m}(\angle \mathrm{AME}) & =360^{\circ}-\left(90^{\circ}+90^{\circ}+50^{\circ}\right) \\
& =130^{\circ} \quad \text { (The req.) }
\end{aligned}
$$

[b] In $\triangle \mathrm{ADC}: \because \mathrm{DA}=\mathrm{DC}$
$\therefore \mathrm{m}(\angle \mathrm{DAC})=\mathrm{m}(\angle \mathrm{DCA})=35^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{D})=180^{\circ}-2 \times 35^{\circ}=110^{\circ}$
,$\because \mathrm{m}(\angle \mathrm{B})+\mathrm{m}(\angle \mathrm{D})=70^{\circ}+110^{\circ}=180^{\circ}$
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral.
(Q.E.D.)

3
[a] $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}} \quad \therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$
, Y is the midpoint of $\overline{\mathrm{AC}} \quad \therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
,$\because A B=A C$
$\therefore \mathrm{MX}=\mathrm{MY}$
, $\because \mathrm{MD}=\mathrm{ME}=\mathrm{r}$
$\therefore \mathrm{XD}=\mathrm{YE}$
(Q.E.D.)
[b] $\because \mathrm{m}(\angle \mathrm{D})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{AMB})$
(inscribed and central angles subtended by $\overparen{A B}$)
$\therefore \mathrm{m}(\angle \mathrm{D})=\frac{1}{2} \times 140^{\circ}=70^{\circ} \quad$ (First req.)
$, \because \overline{\mathrm{AC}} / / \overline{\mathrm{BD}}, \overleftrightarrow{\mathrm{AD}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{D})+\mathrm{m}(\angle \mathrm{DAC})=180^{\circ}$
(interior angles on the same side of the transversal)
$\therefore \mathrm{m}(\angle \mathrm{DAC})=180^{\circ}-70^{\circ}=110^{\circ}$ (Second req.)

4
[a] $\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{CDE})=100^{\circ} \quad$ (First req.)
,$\because \mathrm{m}(\angle \mathrm{ABD})=\frac{1}{2} \mathrm{~m}(\widehat{\mathrm{AD}})=\frac{1}{2} \times 120^{\circ}=60^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CBD})=100^{\circ}-60^{\circ}=40^{\circ}$ (Second req.)
[b] $\because \overline{\mathrm{AB}}$ is a diameter
$\therefore \mathrm{m}(\angle \mathrm{ACB})=90^{\circ}$
(First req.)
,$\because \mathrm{m}(\angle \mathrm{ACD})=\mathrm{m}(\angle \mathrm{ABD})=20^{\circ}$
(two inscribed angles subtended by $\overparen{A D}$)
$\therefore \mathrm{m}(\angle \mathrm{BCD})=90^{\circ}-20^{\circ}=70^{\circ} \quad$ (Second req.)

5
[a] $\because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to the circle
$\therefore \mathrm{AB}=\mathrm{AC}$
In $\triangle \mathrm{ABC}$:
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=\frac{180^{\circ}-50^{\circ}}{2}=65^{\circ}$
(First req.)
, m ($\angle \mathrm{D})$ (inscribed)
$=\mathrm{m}(\angle \mathrm{ABC})$ (tangency) $=65^{\circ}$
(Second req.)
[b] $\because \overleftrightarrow{\mathrm{AB}} / / \overline{\mathrm{XY}}, \overleftrightarrow{\mathrm{AC}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{AXY})=\mathrm{m}(\angle \mathrm{BAX})$ (alternate angles)
,$\because \mathrm{m}(\angle \mathrm{D})$ (inscribed) $=\mathrm{m}(\angle \mathrm{BAC})$ (tangency)
$\therefore \mathrm{m}(\angle \mathrm{D})=\mathrm{m}(\angle \mathrm{AXY})$
$\therefore \mathrm{XCDY}$ is a cyclic quadrilateral.
(Q.E.D.)

27 Matrouh

1

(1) 2 c (3) 4 d 5d 6 b

2
[a] In $\triangle \mathrm{AMB}: \because \mathrm{MA}=\mathrm{MB}=\mathrm{r}$
$\therefore \mathrm{m}(\angle \mathrm{A})=\mathrm{m}(\angle \mathrm{B})=\frac{180^{\circ}-90^{\circ}}{2}=45^{\circ}$
(First req.)
,$\because \cos (\angle \mathrm{A})=\frac{\mathrm{MA}}{\mathrm{AB}}$
$\therefore \cos 45^{\circ}=\frac{\mathrm{MA}}{10}$
$\therefore \mathrm{MA}=10 \times \frac{1}{\sqrt{2}}=5 \sqrt{2} \mathrm{~cm}$.
[b] In $\triangle \mathrm{ABC}: \because \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})$
$\therefore \frac{1}{2} \mathrm{~m}(\angle \mathrm{ABC})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{ACB})$
$\therefore \mathrm{m}(\angle \mathrm{YBX})=\mathrm{m}(\angle \mathrm{YCX})$ and they are drawn on
$\overline{Y X}$ and on one side of it
\therefore The figure BCXY is a cyclic quadrilateral.
(Q.E.D. 1)
$\therefore \mathrm{m}(\angle \mathrm{BXY})=\mathrm{m}(\angle \mathrm{BCY})$
(they are drawn on $\overline{\mathrm{BY}}$ and on one side of it)
$\because \mathrm{m}(\angle \mathrm{CBX})=\mathrm{m}(\angle \mathrm{BCY})$
$\therefore \mathrm{m}(\angle \mathrm{CBX})=\mathrm{m}(\angle \mathrm{BXY})$
and they are alternate angles
$\therefore \overleftrightarrow{\mathrm{X}} / / \overleftrightarrow{\mathrm{BC}}$
(Q.E.D. 2)

3
[a] $\because \overline{\mathrm{DE}} / / \overline{\mathrm{BC}}$
$\therefore \mathrm{m}(\overparen{\mathrm{BD}})=\mathrm{m}(\overparen{\mathrm{EC}})$
$\therefore \mathrm{m}(\angle \mathrm{BAD})=\mathrm{m}(\angle \mathrm{CAE})$
Adding $\mathrm{m}(\angle \mathrm{BAC})$ to both sides :
$\therefore \mathrm{m}(\angle \mathrm{DAC})=\mathrm{m}(\angle \mathrm{BAE})$
[b] $\because \overline{\mathrm{XY}} / / \overline{\mathrm{BC}}, \overleftrightarrow{\mathrm{AC}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{AYX})=\mathrm{m}(\angle \mathrm{ACB})$ (corresponding angles)
,$\because \mathrm{m}(\angle \mathrm{ACB})$ (inscribed) $=\mathrm{m}(\angle B A D)$ (tangency)
$\therefore \mathrm{m}(\angle \mathrm{AYX})=\mathrm{m}(\angle \mathrm{XAD})$
$\therefore \overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the points A, X and Y
(Q.E.D.)

4
[a] $\because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments to the circle
$\therefore \mathrm{AB}=\mathrm{AC}$
In $\triangle \mathrm{ABC}$:
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=\frac{180^{\circ}-50^{\circ}}{2}=65^{\circ}$
,\because EBCD is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{EBC})=180^{\circ}-115^{\circ}=65^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{EBC})=\mathrm{m}(\angle \mathrm{ABC})=65^{\circ}$
$\therefore \overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABE}$
(Q.E.D. 1)

Geometry

, $\because \mathrm{m}(\angle \mathrm{BEC})$ (inscribed)
$=\mathrm{m}(\angle \mathrm{ABC})$ (tangency) $=65^{\circ}$
In $\triangle \mathrm{BCE}: \therefore \mathrm{m}(\angle \mathrm{EBC})=\mathrm{m}(\angle \mathrm{BEC})=65^{\circ}$
$\therefore \mathrm{CB}=\mathrm{CE}$
(Q.E.D. 2)
[b] $\because \overleftrightarrow{\mathrm{BC}}$ is a tangent
$\therefore \mathrm{m}(\angle \mathrm{BMD})$ (central)

$$
=2 \mathrm{~m}(\angle \mathrm{CBD}) \text { (tangency) }=2 \times 50^{\circ}=100^{\circ}
$$

$\therefore \mathrm{m}(\angle \mathrm{AMD})=180^{\circ}-100^{\circ}=80^{\circ} \quad$ (The req.)

5
[a] $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$
$\because \mathrm{Y}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$

$\because \mathrm{AB}=\mathrm{AC} \quad \therefore \mathrm{MX}=\mathrm{MY}$
$\therefore \triangle$ MXY is an isosceles triangle (Q.E.D. 1)
$\because m(\angle \mathrm{AXM})=90^{\circ}, \mathrm{m}(\angle \mathrm{MXY})=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{AXY})=90^{\circ}-30^{\circ}=60^{\circ}$
$\because X$ and Y are the midpoints of $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$, $\mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{AX}=\mathrm{AY}$
From (1) and (2) :
$\therefore \triangle \mathrm{AXY}$ is an equilateral triangle. (Q.E.D. 2)
[b] \because MNLE is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{E})=180^{\circ}-110^{\circ}=70^{\circ}$
, $\because \overline{\mathrm{LE}}$ is a diameter
$\therefore \mathrm{m}(\angle \mathrm{LME})=90^{\circ}$
In \triangle LME : $\therefore \mathrm{m}(\angle \mathrm{MLE})=180^{\circ}-\left(90^{\circ}+70^{\circ}\right)$ $=20^{\circ}$ (The req.)

Governorates' Examinations

1 Cairo Governorate

Answer the following questions : (Calculator is allowed)

1 Choose the correct answer from those given :
1 The measure of the reflex angle of the angle whose measure is 100° equals \qquad。
(a) 80
(b) 90
(c) 200
(d) 260
(2) If A lies on the circle M of diameter length 8 cm ., then $\mathrm{MA}=$ \qquad
(a) 2
(b) 4
(c) 6
(d) 8

3 The number of axes of symmetry of the parallelogram equals \qquad
(a) 0
(b) 1
(c) 2
(d) 3

4 If ABCD is a cyclic quadrilateral, where $\mathrm{m}(\angle B)=50^{\circ}$, then $\mathrm{m}(\angle \mathrm{D})=$ \qquad
(a) 25
(b) 50
(c) 100
(d) 130

5 If the measure of one of the two base angles of an isosceles triangle is 40° , then the measure of the vertex angle is \qquad . ${ }^{\circ}$
(a) 40
(b) 80
(c) 100
(d) 140
6) The inscribed angle drawn in a semicircle is \qquad angle.
(a) an acute
(b) a right
(c) an obtuse
(d) a straight

2 [a] Find the measure of the arc which represents $\frac{1}{4}$ the measure of the circle, then calculate the length of this arc if the radius length of the circle is 14 cm . (Where $\pi=\frac{22}{7}$)
[b] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent-segments to the circle M at B and $\mathrm{C}, \mathrm{m}(\angle \mathrm{A})=80^{\circ}$

Find with proof : m ($\angle \mathrm{BCM})$

3 [a] Using your geometric tools, draw $\overline{\mathrm{AB}}$ with length 5 cm ., then draw a circle passing through the two points A and B whose radius length is 3 cm . How many circles can be drawn?

Geometry

[b] In the opposite figure :
M is a circle, $\mathrm{m}(\angle \mathrm{XMY})=130^{\circ}$ and $\mathrm{ZX}=\mathrm{ZL}$

Find with proof :

$1 \mathrm{~m}(\widehat{\mathrm{XY}})$
2 $\mathrm{m}(\angle \mathrm{XZY})$

(3) $\mathrm{m}(\angle \mathrm{L})$

4] [a] In the opposite figure :

M and N are two intersecting circles at A and B
, $\overrightarrow{\mathrm{HX}}$ is a tangent to the circle M at X
, $\overline{\mathrm{MN}} \cap \overline{\mathrm{AB}}=\{\mathrm{Y}\}$

Prove that : HXMY is a cyclic quadrilateral.
[b] In the opposite figure :
If $\overrightarrow{\mathrm{AB}}$ is a tangent to the circle at B
, $\overrightarrow{\mathrm{AC}}$ intersects the circle at C, D
$, \mathrm{m}(\overparen{\mathrm{BD}})=110^{\circ}, \mathrm{m}(\overparen{\mathrm{BC}})=40^{\circ}$
, find with proof : m $(\angle A)$

5] [a] In the opposite figure :
XYZ is an inscribed triangle in the circle M
, D , H are the midpoints of $\overline{\mathrm{XY}}$ and $\overline{\mathrm{XZ}}$ respectively
If $\mathrm{MD}=\mathrm{MH}$ and $\mathrm{m}(\angle \mathrm{DMH})=120^{\circ}$
, prove that : The triangle XYZ is an equilateral triangle.

[b] In the opposite figure :
If $\overrightarrow{X Y}$ is a tangent to the circle at X
, $\overrightarrow{\mathrm{XY}} / / \overrightarrow{\mathrm{DH}}$
, prove that : DHZL is a cyclic quadrilateral.

2 Giza Governorate

Answer the following questions :

1 Choose the correct answer :
1 The point of concurrence of the medians of the triangle divides the median by the ratio from the base.
(a) $3: 9$
(b) $3: 1$
(c) $4: 2$
(d) $2: 4$

2 If the straight line L is a tangent to the circle M whose diameter length is 8 cm . , then the distance between L and the centre of the circle equals \qquad cm .
(a) 3
(b) 4
(c) 6
(d) 8

3 The measure of the exterior angle of the equilateral triangle at any vertex equals \qquad ..
(a) 60
(b) 108
(c) 120
(d) 135
(4) The measure of the arc which represents half the measure of the circle equals \qquad .${ }^{\circ}$
(a) 180
(b) 90
(c) 120
(d) 240

5 In $\triangle \mathrm{ABC}$, if $(\mathrm{BC})^{2}=(\mathrm{AB})^{2}+(\mathrm{AC})^{2}, \mathrm{~m}(\angle \mathrm{~B})=50^{\circ}$, then $\mathrm{m}(\angle \mathrm{C})=$ \qquad .
(a) 90
(b) 50
(c) 40
(d) 130

6 In the opposite figure :
M is a circle, $\mathrm{m}(\angle \mathrm{A})=120^{\circ}$
, then $\mathrm{m}(\angle \mathrm{C})=$ \qquad .
(a) 110
(b) 60
(c) 55
(d) 180

2 [a] In the opposite figure :

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords in a circle M
, D is the midpoint of $\overline{\mathrm{AB}}$
, H is the midpoint of $\overline{\mathrm{AC}}$

, $\mathrm{m}(\angle \mathrm{BAC})=60^{\circ}$
Find with proof : m ($\angle \mathrm{DMH})$
[b] In the opposite figure :
$\overline{\mathrm{AC}} / / \overline{\mathrm{DB}}, \mathrm{m}(\angle \mathrm{AMB})=140^{\circ}$
Find : m ($\angle \mathrm{CAD})$ with proof.

\qquad
3 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{DC}}$ are two chords in a circle
, $\overline{\mathrm{AB}} \cap \overline{\mathrm{CD}}=\{\mathrm{H}\}, \mathrm{m}(\angle \mathrm{DHB})=110^{\circ}$
,$m(\overparen{\mathrm{AC}})=100^{\circ}$

Find : m ($\angle \mathrm{DCB}$)
[b] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent-segments
to the circle $\mathrm{M}, \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}$
, $\mathrm{m}(\angle \mathrm{BMD})=130^{\circ}$

(1) Prove that : $\overrightarrow{\mathrm{CB}}$ bisects $\angle \mathrm{ACD}$
(2) Find:m $(\angle \mathrm{A})$

4 [a] In the opposite figure :
$\overleftrightarrow{\mathrm{CD}}$ is a tangent to the circle at C
$, \overleftrightarrow{\mathrm{CD}} / / \overline{\mathrm{AB}}, \mathrm{m}(\angle \mathrm{AMB})=120^{\circ}$
Prove that : $\triangle \mathrm{CAB}$ is an equilateral triangle.
[b] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords equal in length in the circle M
, X is the midpoint of $\overline{\mathrm{AB}}$
, Y is the midpoint of $\overline{\mathrm{AC}}$
Prove that : $\mathrm{XD}=\mathrm{YH}$

5 [a] In the opposite figure :
ABC is a triangle inside the circle
, $\overline{\mathrm{DH}} / / \overline{\mathrm{BC}}$
Prove that : $\mathrm{m}(\angle \mathrm{DAC})=\mathrm{m}(\angle \mathrm{BAH})$

[b] In the opposite figure :
ABC is a triangle inside the circle , $\overleftrightarrow{\mathrm{BD}}$ is a tangent to the circle at B
, $\mathrm{X} \in \overline{\mathrm{AB}}, \mathrm{Y} \in \overline{\mathrm{BC}}, \overline{\mathrm{XY}} / / \overleftrightarrow{\mathrm{BD}}$

Prove that :

AXYC is a cyclic quadrilateral.

3 Alexandria Governorate

Answer the following questions : (Calculators are permitted)

1 Choose the correct answer from those given :
1 If the straight line L is a tangent to the circle of diameter length 8 cm . , then the distance between L and the centre of the circle equals \qquad cm .
(a) 3
(b) 4
(c) 6
(d) 8
(2) The square whose side length is 5 cm ., then its surface area equals cm^{2}
(a) 20
(b) 50
(c) 25
(d) 100
(3) The inscribed angle drawn in a semicircle is
(a) acute.
(b) obtuse.
(c) straight.
(d) right.

4 The intersection point of the medians of the triangle divides each median by the ratio
\qquad from the base.
(a) $1: 2$
(b) $2: 1$
(c) $1: 3$
(d) $3: 1$

5 In the opposite figure :
A circle $\mathrm{M}, \mathrm{m}(\angle \mathrm{CMA})=140^{\circ}$
, then $\mathrm{m}(\angle \mathrm{CDA})=$ \qquad -
(a) 70
(b) 110
(c) 40
(d) 140

6 The length of the side opposite to the angle of measure 30° in the right-angled triangle
\qquad the length of the hypotenuse.
equals
(a) 2
(b) $\sqrt{2}$
(c) $\frac{1}{2}$
(d) $\frac{\sqrt{3}}{2}$

2 [a] In the opposite figure :
ABC is an inscribed triangle in a circle
, $\overline{\mathrm{DH}} / / \overline{\mathrm{BC}}$
Prove that :
$\mathrm{m}(\angle \mathrm{DAB})=\mathrm{m}(\angle \mathrm{CAH})$

[b] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords in the circle M, D is the midpoint of $\overline{\mathrm{AB}}$, H is the midpoint of $\overline{\mathrm{AC}}, \mathrm{m}(\angle \mathrm{A})=60^{\circ}$
Find with proof : m ($\angle \mathrm{DMH})$

Geometry

3 [a] In the opposite figure :
$A B C D$ is a quadrilateral inscribed
in a circle $\mathrm{M}, \overline{\mathrm{AC}}$ is a diameter
in the circle, $\mathrm{CB}=\mathrm{CD}$
Prove that : $\mathrm{m}(\widehat{\mathrm{AB}})=\mathrm{m}(\widehat{\mathrm{AD}})$

[b] ABC is an inscribed triangle in a circle $, \mathrm{X} \in \overparen{\mathrm{AB}}, \mathrm{Y} \in \overparen{\mathrm{AC}}$ where $\mathrm{m}(\overparen{\mathrm{AX}})=\mathrm{m}(\overparen{(\mathrm{AY}})$, $\overline{\mathrm{CX}} \cap \overline{\mathrm{AB}}=\{\mathrm{D}\}, \overline{\mathrm{BY}} \cap \overline{\mathrm{AC}}=\{\mathrm{H}\}$ Prove that $:$ BCHD is a cyclic quadrilateral.

4 [a] In the opposite figure :

M is a circle with radius length 7 cm .
, $\mathrm{m}(\widehat{\mathrm{AB}})=108^{\circ}$
Find : the length of $\overparen{\mathrm{AB}}\left(\pi=\frac{22}{7}\right)$

[b] In the opposite figure :
$\mathrm{m}(\angle \mathrm{ABH})=100^{\circ}$
, $\mathrm{m}(\angle \mathrm{CAD})=40^{\circ}$
Prove that : $\mathrm{CD}=\mathrm{AD}$

5 [a] In the opposite figure :
$\overline{A B}$ is a diameter in the circle $M, C \in$ the circle M
A tangent was drawn to the circle at C
to intersect the two drawn tangents for it at A, B
at X, Y respectively where $\mathrm{AB}=10 \mathrm{~cm}$.
, $\mathrm{XC}=5 \mathrm{~cm}$., $\mathrm{YB}=8 \mathrm{~cm}$.

Find : the perimeter of AXYB

[b] In the opposite figure :

ABCD is a parallelogram in which $\mathrm{AC}=\mathrm{BC}$

Prove that :

$\overleftrightarrow{\mathrm{CD}}$ is a tangent to the circle circumscribed about the triangle ABC

4 El-Kalyoubia Governorate

Answer the following questions :

1 Choose the correct answer :
1 The measure of the inscribed angle drawn in a semicircle equals \qquad .${ }^{\circ}$
(a) 360
(b) 180
(c) 120
(d) 90

In the opposite figure :

A circle of centre $M, m(\overparen{A B})=80^{\circ}$
, then $\mathrm{m}(\angle \mathrm{ADB})=$ \qquad .
(a) 40
(b) 60
(c) 120
(d) 160

In the opposite figure :

$\mathrm{AB}=\mathrm{AC}, \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}$
, $\mathrm{MD}=6 \mathrm{~cm}$., then $\mathrm{ME}=$ \qquad cm .
(a) 12
(b) 8
(c) 6
(d) 3

4 In the opposite figure :
If $m(\angle A)=120^{\circ}$
, then $\mathrm{m}(\angle \mathrm{C})=$ \qquad .
(a) 150
(b) 120
(c) 90
(d) 60

5. If the surface of circle $M \cap$ the surface of circle $N=\{A\}$, then the two circles M and N are \qquad
(a) touching internally.
(b) touching externally.
(c) intersecting.
(d) concentric.
(6) The number of the common tangents of two circles touching externally is
(a) 0
(b) 1
(c) 2
(d) 3

2] [a] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords equal in
length in the circle M, X is the midpoint of $\overline{A B}$
, Y is the midpoint of $\overline{\mathrm{AC}}, \mathrm{m}(\angle \mathrm{CAB})=70^{\circ}$
1 Calculate : m ($\angle \mathrm{DME}$)

2) Prove that: $\mathrm{XD}=\mathrm{YE}$
[b] In the opposite figure :
$m(\overparen{B C})=m(\overparen{D E})$
Prove that : $\mathrm{AB}=\mathrm{AD}$

3 [a] In the opposite figure :
ABCD is a quadrilateral in which $\mathrm{AB}=\mathrm{AD}$
, $\mathrm{m}(\angle \mathrm{ABD})=30^{\circ}, \mathrm{m}(\angle \mathrm{C})=60^{\circ}$
Prove that : ABCD is a cyclic quadrilateral.
[b] In the opposite figure :

A circle is drawn touching the sides
of the triangle $\mathrm{ABC}, \overline{\mathrm{AB}}, \overline{\mathrm{BC}}$
, $\overline{\mathrm{AC}}$ at $\mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{AD}=3 \mathrm{~cm}$.
, $\mathrm{BE}=4 \mathrm{~cm} ., \mathrm{CF}=2 \mathrm{~cm}$.
Find : the perimeter of $\triangle \mathrm{ABC}$

4] [a] ABC is a triangle inscribed in a circle,$\overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle at $\mathrm{A}, \mathrm{X} \in \overline{\mathrm{AB}}$, $\mathrm{Y} \in \overline{\mathrm{AC}}$ where $\overline{\mathrm{XY}} / / \overline{\mathrm{BC}}$, prove that $: \overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the points A, X and Y
[b] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ are two chords in the circle
, $\overline{\mathrm{AB}} \cap \overline{\mathrm{CD}}=\{\mathrm{E}\}, \mathrm{m}(\overparen{\mathrm{DB}})=80^{\circ}, \mathrm{m}(\overparen{\mathrm{AC}})=50^{\circ}$
Find : m ($\angle \mathrm{AEC}$)

5 [a] In the opposite figure :

$A B C$ is an inscribed triangle inside a circle
, $\overline{\mathrm{DE}} / / \overline{\mathrm{BC}}$
Prove that : $\mathrm{m}(\angle \mathrm{DAC})=\mathrm{m}(\angle \mathrm{BAE})$

[b] In the opposite figure :

$\overleftrightarrow{\mathrm{CD}}$ is a tangent to the circle at C
, $\overleftrightarrow{\mathrm{CD}} / / \overline{\mathrm{AB}}, \mathrm{m}(\angle \mathrm{AMC})=120^{\circ}$

Prove that:

The triangle $C A B$ is an equilateral triangle.

5 El-Sharkia Governorate

Answer the following questions: (Calculator is allowed)
1 Choose the correct answer from those given :
1 The number of circles passing through three collinear points is \qquad
(a) zero.
(b) 1
(c) 2
(d) 3
(2) M and N are two circles touching internally. If the radius length of the circle M is 3 cm . and the radius length of the circle N is 1 cm ., then $\mathrm{MN}=$ \qquad
(a) 1
(b) 4
(c) 3
(d) 2

3 If ABCD is a cyclic quadrilateral and $\mathrm{m}(\angle \mathrm{A})=70^{\circ}$, then $\mathrm{m}(\angle \mathrm{C})=$ \qquad .${ }^{\circ}$
(a) 140
(b) 110
(c) 100
(d) 70
(4) A circle of centre M and the length of its diameter is 6 cm ., A is a point in the plane of the circle M, if $M A=3 \mathrm{~cm}$., then A lies \qquad
(a) inside the circle.
(b) outside the circle.
(c) on the circle.
(d) on the centre of the circle.

5 In the opposite figure :
M is a circle, $\mathrm{m} \overparen{(\mathrm{BC})}=50^{\circ}$
, $\overline{\mathrm{AB}} / / \overline{\mathrm{DC}}$, then $\mathrm{m}(\stackrel{\mathrm{CD}}{ })=$ \qquad
(a) 100
(b) 60
(c) 120
(d) 80

6) In the opposite figure :
M is a circle,$\overline{A B}$ is a diameter of the circle
, $\mathrm{MA}=4 \mathrm{~cm}$., then the length of $\overparen{\mathrm{AB}}=$ \qquad cm .
(a) 2π
(b) 4π
(c) 8π
(d) 6π

Geometry

2 [a] In the opposite figure :
A circle of centre M
, in which $\mathrm{m}(\angle \mathrm{BMC})=130^{\circ}$
Find: $1 \mathrm{~m}(\angle \mathrm{~A})$
2) $\mathrm{m}(\angle \mathrm{D})$

[b] In the opposite figure :
$\overline{\mathrm{DC}}$ is a diameter of the circle M
, $\overrightarrow{\mathrm{BA}}$ is a tangent to the circle M at B
, $\mathrm{m}(\angle \mathrm{ABD})=135^{\circ}$
Prove that : $\overline{\mathrm{DC}} / / \overrightarrow{\mathrm{BA}}$

3 [a] In the opposite figure :
$\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to the circle M at B
, C respectively, $\mathrm{m}(\angle \mathrm{A})=45^{\circ}, \overrightarrow{\mathrm{BM}} \cap \overrightarrow{\mathrm{AC}}=\{\mathrm{D}\}$

Prove that :

1 The figure ABMC is a cyclic quadrilateral.

(2) $\mathrm{CD}=\mathrm{CM}$
[b] In the opposite figure :
Two concentric circles at $M, \overline{A C}$ and $\overline{A B}$ are two tangent-segments to the smaller circle at E and D and intersect the greater circle
 at C and B respectively. Prove that : $A C=A B$

4 [a] In the opposite figure :
M and N are two intersecting circles at A and B
, $\overline{\mathrm{MN}} \cap \overline{\mathrm{AB}}=\{\mathrm{Y}\}, \mathrm{m}(\angle \mathrm{YNX})=80^{\circ}$
, X is the midpoint of $\overline{\mathrm{AC}}$
Find: $m(\angle B A C)$
[b] In the opposite figure :
$\overrightarrow{\mathrm{BE}} / / \overline{\mathrm{DC}}, \mathrm{m}(\angle \mathrm{DAB})=120^{\circ}$
, $\mathrm{m}(\angle \mathrm{FBE})=45^{\circ}$
Find: m $(\angle C D A)$

5 [a] In the opposite figure :

$\overrightarrow{\mathrm{CB}} \cap \overrightarrow{\mathrm{ED}}=\{\mathrm{A}\}, \mathrm{m}(\angle \mathrm{BED})=10^{\circ}$
, $\mathrm{m}(\overparen{\mathrm{EC}})=80^{\circ}$

[b] In the opposite figure :
ABC is a right-angled triangle at A

$$
, \mathrm{m}(\angle \mathrm{DAB})=60^{\circ}, \mathrm{m}(\angle \mathrm{~B})=30^{\circ}
$$

Prove that : $\overrightarrow{\mathrm{AD}}$ is a tangent to the circle
 passing through the points A, B and C

6 El-Monofia Governorate

Answer the following questions : (Calculators are permitted)

1 Choose the correct answer from those given :
$\left(1\right.$ The area of a square is $50 \mathrm{~cm}^{2}$, then the length of its diagonal is \qquad
(a) 5
(b) 10
(c) 15
(d) 25
$2 \angle \mathrm{~A}, \angle \mathrm{~B}$ are two complementary angles, $\mathrm{m}(\angle \mathrm{A})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{~B})$, then $m(\angle A)=$ \qquad -
(a) 30
(b) 45
(c) 60
(d) 90
(3) $\triangle \mathrm{ABC}$ is right-angled at $\mathrm{B}, \mathrm{m}(\angle \mathrm{C})=30^{\circ}, \mathrm{AC}=6 \mathrm{~cm}$., then $\mathrm{AB}=$ \qquad
(a) 12
(b) 6
(c) 3
(d) $3 \sqrt{3}$

4 In the opposite figure :
$\overleftrightarrow{\mathrm{AB}} \cap$ the surface of the circle $\mathrm{M}=$
(a) \varnothing
(b) $\{\mathrm{C}, \mathrm{D}\}$
(c) $\overline{\mathrm{CD}}$
(d) $\overleftrightarrow{C D}$

(5) ABCD is a cyclic quadrilateral, then $\left[\mathrm{m}(\angle \mathrm{A})+\mathrm{m}(\angle \mathrm{C})-100^{\circ}\right]=$ \qquad ..
(a) 80
(b) 100
(c) 180
(d) 280

6 The measure of the inscribed angle in a semicircle equals \qquad ..
(a) 45
(b) 135
(c) 90
(d) 150

Geometry

2 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle $\mathrm{M}, \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}$
If $\mathrm{m}(\widehat{\mathrm{CD}})=100^{\circ}, \mathrm{m}(\angle \mathrm{AEC})=2 X-10^{\circ}$
1 Calculate : $\mathrm{m}(\overparen{\mathrm{BD}})$
2 Find : the value of x

[b] In the opposite figure :
$\triangle \mathrm{ABC}$ is inscribed in the circle M
, $m(\angle B)=m(\angle C)$
, X is the midpoint of $\overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
Prove that : $\mathrm{MX}=\mathrm{MY}$

3 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle $\mathrm{M}, \overline{\mathrm{CD}} / / \overline{\mathrm{AB}}$
, $\mathrm{m}(\angle \mathrm{AMC})=70^{\circ}$

Calculate :

$1 \mathrm{~m}(\angle \mathrm{ADC})$
(2) $\mathrm{m}(\angle \mathrm{ABD})$

[b] In the opposite figure :
$\triangle \mathrm{ABC}$ is inscribed in a circle
, $\overrightarrow{\mathrm{AX}}$ is a tangent to the circle,$\overline{\mathrm{DE}} / / \overline{\mathrm{BC}}$
Prove that : $\overrightarrow{\mathrm{AX}}$ is a tangent to the circle passing through the points A, D and E

4 [a] In the opposite figure :
Two circles M and N are intersecting at A and B , $\mathrm{E} \in \overrightarrow{\mathrm{BA}}, \overline{\mathrm{EC}}$ intersects the circle M at C, F
, X is the midpoint of $\overline{\mathrm{CF}}, \mathrm{m}(\angle \mathrm{E})=52^{\circ}$
Calculate : m ($\angle \mathrm{XMD}$)

[b] In the opposite figure :
$m(\angle A)=70^{\circ}$
, $\mathrm{m}(\angle \mathrm{DBC})=35^{\circ}, \mathrm{CB}=\mathrm{CD}$

Prove that :

$A B C D$ is a cyclic quadrilateral.

5 [a] In the opposite figure :
The circle M touches the sides
of $\triangle A B C$ at D, E and F
If $\mathrm{BC}=10 \mathrm{~cm}$., $\mathrm{DB}=6 \mathrm{~cm}$.
, calculate : the length of $\overline{\mathrm{CE}}$

[b] In the opposite figure :
ABCD is a parallelogram
, $\mathrm{AB}=\mathrm{AE}$
Prove that : AECD is a cyclic quadrilateral.

7 El-Gharbia Governorate

Answer the following questions :

1 Choose the correct answer :
1 The measure of the inscribed angle which is drawn in $\frac{1}{3}$ a circle equals \qquad \therefore
(a) 240
(b) 120
(c) 60
(d) 30
(2) If the surface of the circle $M \cap$ the surface of the circle $N=\{A\}$, then the two circles M and N are \qquad
(a) distant.
(b) one is inside the other.
(c) intersecting.
(d) touching externally.
(3) ABC is an equilateral triangle, then the number of symmetry axes of the side $\overline{\mathrm{BC}}$ equals \qquad
(a) 3
(b) 2
(c) 1
(d) 0

4 ABC is a triangle in which: $(\mathrm{AB})^{2}+(\mathrm{BC})^{2}<(\mathrm{AC})^{2}$, then $\angle \mathrm{C}$ is
(a) right.
(b) acute.
(c) straight.
(d) obtuse.

5 The \qquad is a cyclic quadrilateral.
(a) trapezium
(b) rhombus
(c) rectangle
(d) parallelogram
(6) A rhombus whose diagonals lengths are 6 cm . and 10 cm ., then its area is cm^{2}.
(a) 60
(b) 15
(c) 30
(d) 10

Geometry

2] [a] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords including an angle
of measure $120^{\circ}, \mathrm{D}$ and E are the midpoints
of $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ respectively
, $\overrightarrow{\mathrm{DM}}$ and $\overrightarrow{\mathrm{EM}}$ intersect the circle at X and Y respectively.

Prove that : $\triangle X Y M$ is an equilateral triangle.
[b] In the opposite figure :
$\overrightarrow{\mathrm{DA}}$ bisects $\angle \mathrm{BDM}$ and cuts
the circle at $\mathrm{A}, \overline{\mathrm{DB}} \perp \overleftrightarrow{\mathrm{AB}}$
Prove that:
$\overleftrightarrow{\mathrm{AB}}$ is a tangent to the circle M at A

3 [a] In the opposite figure :

$\overline{\mathrm{AB}}$ is a diameter in the circle M
, $\mathrm{m}(\angle \mathrm{BMD})=50^{\circ}$
Find : m ($\angle \mathrm{ACD})$
[b] In the opposite figure :
ABC is a triangle inscribed
in a circle,$\overline{\mathrm{DE}} / / \overline{\mathrm{BC}}$

Prove that :

$\mathrm{m}(\angle \mathrm{DAC})=\mathrm{m}(\angle \mathrm{BAE})$

4 [a] In the opposite figure :
M and N are two intersecting circles at A and B
, $\overleftrightarrow{A D}$ is drawn to intersect circle M at E and circle N at D
, $\overleftrightarrow{\mathrm{BC}}$ is drawn to intersect circle M at F and circle N at C and $\mathrm{m}(\angle \mathrm{C})=70^{\circ}$

1 Find : $\mathrm{m}(\angle \mathrm{F}) \quad 2$ Prove that : $\overline{\mathrm{CD}} / / \overline{\mathrm{EF}}$
[b] In the opposite figure :
$\overrightarrow{\mathrm{XA}}$ and $\overrightarrow{\mathrm{XB}}$ are two tangents to
the circle at A and $\mathrm{B}, \mathrm{m}(\angle \mathrm{AXB})=70^{\circ}$
and $\mathrm{m}(\angle \mathrm{DCB})=125^{\circ}$
Prove that : $\overrightarrow{\mathrm{AB}}$ bisects $\angle \mathrm{DAX}$

5 [a] In the opposite figure :

M and N are two circles intersecting at A and B , $\overrightarrow{\mathrm{MX}} \perp \overline{\mathrm{AC}}$ and intersects $\overline{\mathrm{AC}}$ at X and intersects the circle M at $\mathrm{Y}, \overline{\mathrm{MN}}$ is drawn to intersect $\overline{\mathrm{AB}}$ at D and intersect the circle M at E, if $A C=A B$

, prove that : $\mathrm{XY}=\mathrm{DE}$
[b] In the opposite figure :
ABC is a triangle inscribed in a circle,
$\overleftrightarrow{\mathrm{BD}}$ is a tangent to the circle at $\mathrm{B}, \mathrm{X} \in \overline{\mathrm{AB}}$ and $\mathrm{Y} \in \overline{\mathrm{BC}}$, where $\overline{\mathrm{XY}} / / \overleftrightarrow{\mathrm{BD}}$

Prove that : AXYC is a cyclic quadrilateral.

8 El-Dakahlia Governorate

Answer the following questions : (Calculator is allowed)

1 [a] Choose the correct answer :

11 The two tangents which are drawn from the two endpoints of a diameter of a circle are \qquad
(a) parallel.
(b) intersecting.
(c) perpendicular.
(d) equal.
(2) A chord is of length 8 cm ., in a circle of radius length 5 cm . , then the chord is at \qquad cm . from the centre of the circle.
(a) 1
(b) 2
(c) 3
(d) 4

3 The measure of the central angle which is opposite to an arc of length $\frac{1}{3} \pi r$ equals \qquad .
(a) 30
(b) 60
(c) 120
(d) 240

[b] In the opposite figure :

$\overline{\mathrm{BC}}$ is a diameter of the circle M , $\mathrm{m}(\angle \mathrm{A})=20^{\circ}, \mathrm{m}(\widehat{\mathrm{CE}})=80^{\circ}$
Find : $m(\overparen{D E})$

2 [a] Choose the correct answer :

1 The number of symmetry axes of two circles touching externally is
(a) 0
(b) 1
(c) 2
(d) ∞
(2) If the point A lies on the surface of the circle M and the length of its diameter is 6 cm ., then MA \in
(a) $]-\infty, 6]$
(b) $]-\infty, 3]$
(c) $[0,3]$
(d) $] 3, \infty[$
(3) ABCD is a quadrilateral inscribed in a circle, $\mathrm{m}(\angle \mathrm{A})=70^{\circ}$, then $\mathrm{m}(\widehat{\mathrm{BAD}})=$ \qquad .
(a) 35
(b) 55
(c) 140
(d) 220
[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter of a circle M
, $\mathrm{m}(\angle \mathrm{BMD})=30^{\circ}$
Find : $1 \mathrm{~m}(\angle \mathrm{BCD})$
(2) $\mathrm{m}(\angle \mathrm{ACD})$

3 [a] In the opposite figure :
ABCD is a quadrilateral inscribed in a circle $, \mathrm{E} \in \overrightarrow{\mathrm{CB}}, \mathrm{m}(\angle \mathrm{ABE})=100^{\circ}$,
D is the midpoint of $\overparen{\mathrm{AC}}$
Find : m ($\angle \mathrm{DAC})$

[b] In the opposite figure :

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent-segments to the circle at B and $\mathrm{C}, \mathrm{AB}=(2 x-1) \mathrm{cm}$.,
$\mathrm{AC}=(X+2) \mathrm{cm}, \mathrm{BC}=(7-X) \mathrm{cm}$.
Find: 1 The value of x
(2) The perimeter of $\triangle \mathrm{ABC}$

4 [a] In the opposite figure :
ABCD is a parallelogram,
$\mathrm{E} \in \overrightarrow{\mathrm{CD}}, \mathrm{BE}=\mathrm{BC}$
Prove that : 1 ABDE is a cyclic quadrilateral.
(2) $\mathrm{m}(\angle \mathrm{AEB})=\mathrm{m}(\angle \mathrm{DBC})$

[b] In the opposite figure :

Two concentric circles at M
, $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords in the greater
circle and two tangent-segments to the smaller circle at D

, E respectively, $\mathrm{m}(\angle \mathrm{A})=50^{\circ}$
1 Find : m ($\angle \mathrm{EMD}$)
(2) Prove that: $\mathrm{AB}=\mathrm{AC}$

5 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ is a chord in a circle M
, D is the midpoint of $\overline{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ bisects $\angle \mathrm{BAM}$
Prove that : $\overline{\mathrm{DM}} \perp \overline{\mathrm{CM}}$
[b] In the opposite figure :

$\overrightarrow{\mathrm{EA}}$ and $\overrightarrow{\mathrm{EB}}$ are two tangents to the circle
at A and $\mathrm{B}, \mathrm{m}(\angle \mathrm{E})=70^{\circ}, \mathrm{m}(\angle \mathrm{D})=125^{\circ}$

Prove that:

(1) $\mathrm{AB}=\mathrm{AC}$
(2) $\overrightarrow{\mathrm{AC}}$ is a tangent to the circle passing through the vertices of $\triangle \mathrm{ABE}$

9 Ismailia Governorate

Answer the following questions : (Calculator is allowed)
1 Choose the correct answer from those given :
1 The longest chord in the circle is called \qquad
(a) a tangent.
(b) a secant.
(c) a diameter.
(d) an arc.
2. If the two circles M, N are touching internally, their radii lengths are $7 \mathrm{~cm} ., 10 \mathrm{~cm}$., then, $\mathrm{MN}=$ \qquad cm .
(a) 1
(b) 3
(c) 7
(d) 17
(3) The inscribed angle drawn in a semicircle is \qquad ...
(a) acute.
(b) obtuse.
(c) straight.
(d) right.

44 The length of the side opposite to the angle of measure 30° in the right-angled triangle equals \qquad the length of the hypotenuse.
(a) $\frac{1}{2}$
(b) $\frac{\sqrt{3}}{2}$
(c) $\sqrt{2}$
(d) 2

Geometry

5 ABCD is a cyclic quadrilateral in which $\mathrm{m}(\angle \mathrm{A})=70^{\circ}$, then $\mathrm{m}(\angle \mathrm{C})=$ \qquad ..
(a) 20
(b) 25
(c) 10
(d) 110

6 The number of rectangles in the opposite figure is \qquad
\square
(a) 4
(b) 5
(c) 6
(d) 7

2 [a] In the opposite figure :
A circle $\mathrm{M}, \mathrm{m}(\angle \mathrm{BMD})=150^{\circ}$
Find with proof : m ($\angle \mathrm{C})$

[b] In the opposite figure :
$A B C D$ is a quadrilateral in which $A B=A D$
, $\mathrm{m}(\angle \mathrm{ABD})=30^{\circ}, \mathrm{m}(\angle \mathrm{C})=60^{\circ}$

Prove that :

ABCD is a cyclic quadrilateral.

3 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle $\mathrm{M}, \mathrm{m}(\overparen{\mathrm{AD}})=\mathrm{m}(\overparen{\mathrm{DC}})$
, $\mathrm{m}(\angle \mathrm{CAB})=30^{\circ}$
1 Find with proof : m ($\angle \mathrm{CDB}$)
2 Prove that : $\overline{\mathrm{CD}} / / \overline{\mathrm{BA}}$

[b] In the opposite figure :
$\overrightarrow{\mathrm{AD}}$ is a tangent to the circle M
, $\overline{\mathrm{AC}}$ intersects the circle at B, C and E
is the midpoint of $\overline{\mathrm{BC}}, \mathrm{m}(\angle \mathrm{A})=65^{\circ}$
Find with proof : m ($\angle \mathrm{DME})$

4 [a] In the opposite figure :
$\overline{\mathrm{AB}}, \overline{\mathrm{BC}}$ and $\overline{\mathrm{AC}}$ are tangent-segments to the circle M
at X, Y and Z respectively.
If $\mathrm{AC}=10 \mathrm{~cm}$., $\mathrm{AX}=6 \mathrm{~cm}$.
and the perimeter of $\triangle \mathrm{ABC}=24 \mathrm{~cm}$.

, find : The length of $\overline{\mathrm{AB}}$
[b] In the opposite figure :
A circle of centre $\mathrm{M}, \mathrm{m}(\angle \mathrm{BMD})=80^{\circ}$
, $\mathrm{m}(\angle \mathrm{ABC})=110^{\circ}$
1 Find with proof : m ($\angle \mathrm{CDB}$)
2 Prove that: $\mathrm{CB}=\mathrm{CD}$

5 [a] In the opposite figure :
$m(\angle \mathrm{~A})=40^{\circ}, \mathrm{m}(\overparen{\mathrm{BD}})=60^{\circ}$
,$m(\overparen{\mathrm{BC}})=\mathrm{m}(\overparen{\mathrm{DE}})$
Find: $1 \mathrm{~m} \overparen{(\mathrm{EC})}$
(2) $\mathrm{m} \overparen{(\mathrm{BC})}$

[b] In the opposite figure :
ABC is a triangle inscribed in a circle
, $\overleftrightarrow{\mathrm{BD}}$ is a tangent to the circle at B
, $X \in \overline{\mathrm{AB}}, Y \in \overline{\mathrm{BC}}$
, where $\overline{\mathrm{XY}} / / \overleftrightarrow{\mathrm{DB}}$
Prove that : AXYC is a cyclic quadrilateral.

10 Suez Governorate

Answer the following questions : (Calculator is allowed)
1 Choose the correct answer from those given :
In the opposite figure :
If M is a circle, $\mathrm{m}(\angle \mathrm{BAC})=50^{\circ}$
, then $\mathrm{m}(\angle \mathrm{BMC})=$ \qquad -
(a) 50
(b) 90
(c) 25
(d) 100

2 The number of circles which pass through three non-collinear points equals \qquad
(a) 0
(b) 1
(c) 2
(d) 3

Geometry

(3) In the opposite figure :

If M is a circle, $E \in \overrightarrow{C B}, m(\angle A D C)=110^{\circ}$, then $\mathrm{m}(\angle \mathrm{ABE})=$ \qquad。
(a) 70
(b) 55
(c) 110
(d) 80

4 The tangent to a circle of diameter length 6 cm . is at a distance of \qquad from its centre.
(a) 6 cm .
(b) 12 cm .
(c) 3 cm .
(d) 2 cm .

5 The circumference of the circle equals \qquad
(a) $2 \pi r$
(b) πr^{2}
(c) $2 \pi r^{2}$
(d) πr
(6) In the opposite figure :

If $\overline{\mathrm{AB}}$ is a diameter of the circle M
, then $\mathrm{m}(\angle \mathrm{C})=$ \qquad。
(a) 180
(b) 90
(c) 45
(d) 60

2] [a] In the opposite figure :

$\overrightarrow{\mathrm{BD}}$ is a tangent to the circle M at B
, $\mathrm{m}(\angle \mathrm{BMA})=80^{\circ}$
Find: $1 \mathrm{~m}(\angle \mathrm{ABD})$

$$
2 \mathrm{~m}(\overparen{\mathrm{AB}})
$$

[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter of the circle M
, $\overline{\mathrm{BC}}$ is a tangent-segment touching it at B
, E is the midpoint of $\overline{\mathrm{AD}}, \mathrm{m}(\angle \mathrm{C})=50^{\circ}$
Find: m ($\angle \mathrm{EMB}$)

3 [a] In the opposite figure :
$m(\overparen{A B})=m(\overparen{B C})=m(\overparen{A C})$
Find: $m(\angle C)$

[b] In the opposite figure :

M is a circle,$\overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$
, E is the midpoint of $\overline{\mathrm{AC}}, \mathrm{MD}=\mathrm{ME}$
Prove that : $\mathrm{AB}=\mathrm{AC}$

(4) [a] In the opposite figure :
$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ are two tangents to the circle
at B and $\mathrm{C}, \mathrm{m}(\angle \mathrm{BDC})=70^{\circ}$
Find: $1 \mathrm{~m}(\angle \mathrm{ABC})$

$$
2 \mathrm{~m}(\angle \mathrm{BAC})
$$

[b] In the opposite figure :
$\overline{\mathrm{AB}} / / \overline{\mathrm{CD}}, \mathrm{m}(\overparen{\mathrm{AC}})=30^{\circ}$
Find : m ($\angle \mathrm{BED})$

5 [a] State two cases of the cyclic quadrilateral.
[b] In the opposite figure :
$\mathrm{m}(\angle \mathrm{BAC})=50^{\circ}, \mathrm{m}(\angle \mathrm{BCA})=30^{\circ}$
, $\mathrm{m}(\angle \mathrm{ADC})=80^{\circ}$
Prove that : ABCD is a cyclic quadrilateral.

11 Port Said Governorate

Answer the following questions :

1 Choose the correct answer from those given :
$(1$ The circumference of a circle of radius length 7 cm . is
cm .
(a) 7π
(b) 8π
(c) 14π
(d) 49π

2 A circle can be drawn passing through the vertices of a
(a) rectangle.
(b) rhombus.
(c) trapezium.
(d) parallelogram.

Geometry

3 In the opposite figure :
$\mathrm{m}(\overparen{\mathrm{AC}})=50^{\circ}, \mathrm{m} \overparen{(\mathrm{BD})}=110^{\circ}$, then $\mathrm{m}(\angle \mathrm{H})=$ \qquad。
(a) 60
(b) 50
(c) 40
(d) 30

(4) The inscribed angle drawn in a semicircle is \qquad angle.
(a) an acute
(b) a right
(c) an obtuse
(d) a straight

5 If the diameter length of a circle $=8 \mathrm{~cm}$. and the line L is at a distance of 4 cm . from its centre, then the line L is \qquad the circle.
(a) a secant to
(b) outside
(c) a tangent to
(d) a symmetry axis of

6 The number of common tangents of two distant circles is \qquad
(a) 4
(b) 3
(c) 2
(d) 1

2 [a] In the opposite figure :

$\overline{\mathrm{XY}}$ is a tangent-segment to the circle
, $\overline{\mathrm{MX}}$ is a radius
, $\mathrm{MX}=5 \mathrm{~cm} ., \mathrm{XY}=12 \mathrm{~cm}$.

Find: YZ
[b] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords equal in length in the circle $, \overline{\mathrm{MO}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MH}} \perp \overline{\mathrm{AC}}$

Prove that : $\mathrm{OX}=\mathrm{HY}$

3 [a] Mention two cases in which the quadrilateral is cyclic.

[b] In the opposite figure :

$\overline{\mathrm{AB}}$ is a diameter in a circle M
, $\overline{\mathrm{BD}}$ is a tangent-segment
and H is the midpoint of $\overline{\mathrm{AC}}$
Prove that: DBMH is a cyclic quadrilateral.

4 [a] In the opposite figure :
$\overrightarrow{\mathrm{AB}}$ is a tangent
, $\overline{\mathrm{DC}}$ is a diameter in a circle M
, $\mathrm{m}(\angle \mathrm{A})=40^{\circ}$
Find : m $(\angle \mathrm{BDC})$ with proof.

[b] In the opposite figure :
$\triangle \mathrm{ABC}$ is inscribed in a circle
, $\overline{\mathrm{XY}} / / \overline{\mathrm{BC}}$
Prove that : $\mathrm{m}(\angle \mathrm{XAC})=\mathrm{m}(\angle \mathrm{YAB})$

5] [a] In the opposite figure :
The sides of $\triangle \mathrm{ABC}$ touches the circle
externally at D, H and Q
, $\mathrm{AD}=5 \mathrm{~cm} ., \mathrm{BH}=4 \mathrm{~cm} ., \mathrm{CQ}=3 \mathrm{~cm}$.
Find: The perimeter of $\triangle \mathrm{ABC}$

[b] In the opposite figure :
$\overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle at A
, $\overline{\mathrm{YX}} / / \overline{\mathrm{CB}}$
Prove that:
$\overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle
passing through the points $\mathrm{A}, \mathrm{Y}, \mathrm{X}$

12
 Damietta Governorate

Answer the following questions: (Calculator is allowed)
1 Choose the correct answer from the given answers :
1 The angle of measure 20° is the complementary angle of the angle of measure \qquad。
(a) 20
(b) 40
(c) 70
(d) 160

2 If the two circles M, N are touching externally, their radii lengths are $3 \mathrm{~cm} ., 7 \mathrm{~cm}$., then $\mathrm{MN}=$ \qquad cm .
(a) 3
(b) 4
(c) 6
(d) 10

3 The two diagonals are perpendicular and not equal in length in the
(a) rhombus.
(b) trapezium.
(c) square.
(d) parallelogram.

4 The measure of the inscribed angle in a semicircle is equal to \qquad。
(a) 30
(b) 60
(c) 90
(d) 180

5 In the opposite figure :
If $\mathrm{m}(\angle \mathrm{ADB})=70^{\circ}$, then $\mathrm{m}(\angle \mathrm{ACB})=$ \qquad。
(a) 35
(b) 70
(c) 90
(d) 140
6. In $\triangle \mathrm{ABC}$, if $(\mathrm{AB})^{2}=(\mathrm{AC})^{2}+(\mathrm{BC})^{2}+3$, then $\angle \mathrm{C}$ is \qquad

(a) acute.
(b) right.
(c) obtuse.
(d) straight.

2 [a] In the opposite figure :
$\overrightarrow{\mathrm{AB}}$ is a tangent to the circle at A
, $\mathrm{m}(\angle \mathrm{MBE})=120^{\circ}$
Find with proof : $\mathrm{m}(\angle \mathrm{AMB})$

[b] In the opposite figure :
ABCD is a rectangle inscribed in a circle , the chord $\overline{\mathrm{CE}}$ is drawn where $\mathrm{CE}=\mathrm{CD}$

Prove that :

$1 \mathrm{~m}(\widehat{\mathrm{AB}})=\mathrm{m} \overparen{(\mathrm{CE})}$
2. $\mathrm{AE}=\mathrm{BC}$

3 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords equal in length
in the circle M, X is the midpoint of $\overline{\mathrm{AB}}$
, Y is the midpoint of $\overline{\mathrm{AC}}$
, $\mathrm{m}(\angle \mathrm{BAC})=80^{\circ}$

1 Find : m ($\angle \mathrm{EMD}$)
Prove that : $\mathrm{YE}=\mathrm{XD}$
[b] In the opposite figure :
ABCD is a quadrilateral $, \mathrm{AB}=\mathrm{AD}, \mathrm{m}(\angle \mathrm{ABD})=30^{\circ}$
, $m(\angle C)=60^{\circ}$
Prove that : ABCD is a cyclic quadrilateral.

4] [a] In the opposite figure :
$\overline{\mathrm{CA}}$ and $\overline{\mathrm{BD}}$ are two parallel chords in the circle $\mathrm{M}, \mathrm{m}(\angle \mathrm{AMB})=140^{\circ}$

Find with proof : m ($\angle \mathrm{CAD}$)
[b] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent-segments to the circle at B and C
, $\overrightarrow{\mathrm{CB}}$ bisects $\angle \mathrm{ACD}, \mathrm{m}(\angle \mathrm{BCD})=65^{\circ}$
Find with proof : $m(\angle \mathrm{~A})$ and $\mathrm{m}(\angle \mathrm{D})$

5 [a] In the opposite figure :
$\mathrm{E} \in \overrightarrow{\mathrm{AB}}, \mathrm{E} \notin \overline{\mathrm{AB}}$
, $\mathrm{m}(\overparen{\mathrm{AB}})=110^{\circ}$
, $\mathrm{m}(\angle \mathrm{CBE})=85^{\circ}$
Find with proof : $1 \mathrm{~m}(\angle \mathrm{ADB})$
$2 \mathrm{~m}(\angle \mathrm{BDC})$

[b] In the opposite figure :
$\triangle \mathrm{ABC}$ is right-angled at A

$$
, \mathrm{AC}=3 \mathrm{~cm} ., \mathrm{BC}=6 \mathrm{~cm} ., \mathrm{m}(\angle \mathrm{DAB})=60^{\circ}
$$

Prove that : $\overrightarrow{\mathrm{AD}}$ is a tangent to the circle
passing through the vertices of $\triangle \mathrm{ABC}$

13 Kafr El-Sheikh Governorate

Answer the following questions : (Calculator is allowed)
1 [a] Choose the correct answer from those given :
1 The measure of the arc which equals half the measure of the circle is \qquad。
(a) 360
(b) 180
(c) 120
(d) 90
(2) ABC is a triangle in which $(\mathrm{AC})^{2}>(\mathrm{AB})^{2}+(\mathrm{BC})^{2}$, then the type of $\angle \mathrm{ABC}$ is
(a) obtuse.
(b) acute.
(c) right.
(d) straight.
\qquad
(3) M and N are two intersecting circles, their radii lengths are 3 cm . and 5 cm ., then $: M N \in$ \qquad
(a) $] 8, \infty[$
(b) $] 2, \infty[$
(c) $] 0,2[$
(d) $] 2,8[$

[b] In the opposite figure :

$\overrightarrow{\mathrm{AD}}$ is a tangent to the circle M
, $\overrightarrow{\mathrm{AC}}$ intersects the circle M at B and C
, E is the midpoint of $\overline{\mathrm{BC}}, \mathrm{m}(\angle \mathrm{A})=56^{\circ}$
Find : $\mathrm{m}(\angle \mathrm{DME})$

2 [a] Choose the correct answer from those given :

1 The measure of the inscribed angle drawn in a semicircle equals \qquad。
(a) 45
(b) 120
(c) 90
(d) 180
(2) The lateral area of a cube is $36 \mathrm{~cm}^{2}$, then its total area is \qquad cm^{2}.
(a) 18
(b) 54
(c) 81
(d) 216

3 In the opposite figure :
$\mathrm{m}(\overparen{\mathrm{AB}})=140^{\circ}$
, $\mathrm{m}(\overparen{(\mathrm{CD}})=50^{\circ}$, then $\mathrm{m}(\angle \mathrm{E})=$ \qquad。
(a) 45
(b) 40
(c) 95
(d) 55

[b] In the opposite figure :

$\overline{\mathrm{AB}}$ is a diameter in the circle M
, $\mathrm{C} \in$ the circle $\mathrm{M}, \mathrm{m}(\angle \mathrm{CAB})=30^{\circ}$
, D is the midpoint of $\overparen{A C}, \overline{\mathrm{DB}} \cap \overline{\mathrm{AC}}=\{\mathrm{H}\}$
1 Find :m $(\widehat{\mathrm{AD}})$
Prove that : $\overline{\mathrm{AB}} / / \overline{\mathrm{DC}}$

3 [a] Two concentric circles at $\mathrm{M}, \overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords in the larger circle touching the smaller circle at X and Y respectively

Prove that : $\mathrm{AB}=\mathrm{AC}$

[b] In the opposite figure :

ABC is a triangle in which $\mathrm{m}(\angle \mathrm{BAC})=90^{\circ}$
, $\mathrm{BC}=8 \mathrm{~cm}$., $\mathrm{AC}=4 \mathrm{~cm}$.
, $\mathrm{m}(\angle \mathrm{BAD})=60^{\circ}$
Prove that : $\overrightarrow{\mathrm{AD}}$ is a tangent to the circle

passing through the vertices of the triangle $A B C$
4 [a] In the opposite figure :
A circle is drawn touching the sides of
the triangle ABC at $\mathrm{D}, \mathrm{E}, \mathrm{F}$
, $\mathrm{AD}=3 \mathrm{~cm} ., \mathrm{BD}=2 \mathrm{~cm} ., \mathrm{AC}=8 \mathrm{~cm}$.

Find : The length of $\overline{\mathrm{BC}}$
[b] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent-segments to the circle M
, $\overline{\mathrm{AB}} / / \overline{\mathrm{CD}}, \mathrm{m}(\angle \mathrm{BMD})=130^{\circ}$
Find : $m(\angle A)$

5 [a] State two cases of a cyclic quadrilateral.
[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle $\mathrm{M}, \mathrm{D} \in \overrightarrow{\mathrm{AB}}, \mathrm{D} \notin \overline{\mathrm{AB}}$, $\overrightarrow{\mathrm{DE}} \perp \overrightarrow{\mathrm{AB}}, \mathrm{C} \in \overparen{\mathrm{AB}}, \overrightarrow{\mathrm{CB}} \cap \overrightarrow{\mathrm{DE}}=\{\mathrm{E}\}$

1 Find : m ($\angle \mathrm{ACB}$)
(2) Prove that: ACDE is a cyclic quadrilateral.

14 El-Beheira Governorate

Answer the following questions : (Calculator is permitted)
1 Choose the correct answer from the given ones :
1 If the origin point is the midpoint of $\overline{\mathrm{AB}}, \mathrm{A}(5,-2)$, then B is
(a) $(5,2)$
(b) $(5,-2)$
(c) $(-5,-2)$
(d) $(-5,2)$
(2) The slope of the straight line : $3 x+2 \mathrm{y}=1$ is
(a) $\frac{2}{3}$
(b) $\frac{-3}{2}$
(c) $\frac{-2}{3}$
(d) $\frac{3}{2}$
(3) The measure of any interior angle of the regular pentagon is
(a) 90°
(b) 108°
(c) 120°
(d) 135°

4 The ratio between the measure of the inscribed angle and the measure of the central angle subtended by the same arc equals
(a) $1: 2$
(b) $2: 1$
(c) $1: 1$
(d) $1: 3$

5 It is possible to draw a circle passing through the vertices of a
(a) trapezium.
(b) rhombus.
(c) parallelogram.
(d) rectangle.

6 If the length of a diameter of a circle is 7 cm . and the straight line L is at a distance of 3.5 cm . from its centre, then L is \qquad
(a) a secant to the circle at two points.
(b) outside the circle.
(c) a tangent to the circle.
(d) an axis of symmetry of the circle.

2 [a] In the opposite figure :

A triangle $A B C$ is inscribed in the circle M
in which : $\mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{C})$
, X is the midpoint of $\overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
Prove that : $M X=M Y$

[b] In the opposite figure :
$\mathrm{E} \in \overrightarrow{\mathrm{AB}}, \mathrm{E} \notin \overrightarrow{\mathrm{AB}}$
,$m(\overparen{A B})=110^{\circ}$
, $\mathrm{m}(\angle \mathrm{CBE})=85^{\circ}$
Find : m ($\angle \mathrm{BDC}$)

3 [a] In the opposite figure :

$\overline{\mathrm{AB}}$ is a chord in the circle M
$, \overline{\mathrm{CM}} / / \overline{\mathrm{AB}}, \overline{\mathrm{BC}} \cap \overline{\mathrm{AM}}=\{\mathrm{E}\}$
, $m(\angle A)=60^{\circ}$
Find: $m(\angle B)$

[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle $\mathrm{M}, \overrightarrow{\mathrm{AB}} \cap \overrightarrow{\mathrm{CD}}=\{\mathrm{E}\}$ $\left., \mathrm{m}(\angle \mathrm{AEC})=30^{\circ}, \mathrm{m} \overparen{(\mathrm{AC}}\right)=80^{\circ}$
Find : $\mathrm{m}(\overparen{C D})$

4 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle M
, X is the midpoint of $\overline{\mathrm{CA}}$
and $\overrightarrow{\mathrm{XM}}$ intersects the tangent to the circle at B in Y
Prove that : The figure AXBY is a cyclic quadrilateral.

[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a chord in the circle $\mathrm{M}, \overrightarrow{\mathrm{AC}}$ bisects $\angle \mathrm{BAM}$ and intersects the circle M at C

If D is the midpoint of $\overline{\mathrm{AB}}$
, prove that : $\overline{\mathrm{DM}} \perp \overline{\mathrm{CM}}$

5 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent-segments
to the circle at B and $C, m(\angle A)=40^{\circ}$
Find with proof: $m(\angle D)$
[b] In the opposite figure :

$\overrightarrow{\mathrm{XA}}$ and $\overrightarrow{\mathrm{XB}}$ are two tangents to the circle
at A and $\mathrm{B}, \mathrm{m}(\angle \mathrm{AXB})=50^{\circ}$
, $\mathrm{m}(\angle \mathrm{DCB})=115^{\circ}$
Prove that:
$1 \overrightarrow{\mathrm{AB}}$ bisects $\angle \mathrm{DAX}$

$$
\text { (2) } \mathrm{BD}=\mathrm{BA}
$$

15 El-Fayoum Governorate

Answer the following questions : (Calculator is allowed)
1 Choose the correct answer :
1 The inscribed angle in a semicircle is angle.
(a) an acute
(b) an obtuse
(c) a straight
(d) a right
2. If ABC is a right-angled triangle at $\mathrm{B}, \mathrm{AB}=6 \mathrm{~cm}$., $\mathrm{BC}=8 \mathrm{~cm}$., D is the midpoint of $\overline{\mathrm{AC}}$, then $\mathrm{BD}=$ \qquad cm .
(a) 10
(b) 20
(c) 5
(d) otherwise

Geometry

\qquad
(3) The tangent to a circle of diameter length 6 cm . is at a distance of \qquad cm. from its centre.
(a) 6
(b) 12
(c) 3
(d) 2

4 The number of axes of symmetry of the circle is \qquad
(a) 0
(b) 1
(c) 2
(d) infinite.

5 A regular polygon, the measure of one of its interior angles is 144°, then the number of its sides is \qquad sides.
(a) 7
(b) 8
(c) 9
(d) 10

6 In a cyclic quadrilateral, each two opposite angles are
(a) equal.
(b) complementary.
(c) supplementary.
(d) alternate.

2 [a] In the opposite figure :

$\overline{\mathrm{AD}} / / \overline{\mathrm{BC}}, \mathrm{m}(\angle \mathrm{B})=74^{\circ}$
, $\overrightarrow{\mathrm{CE}}$ bisects $\angle \mathrm{DCF}, \mathrm{m}(\angle \mathrm{DCE})=53^{\circ}$
Prove that : ABCD is a cyclic quadrilateral.

[b] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords
in the circle $M, m(\angle B A C)=65^{\circ}$
, D is the midpoint of $\overline{\mathrm{AB}}$
, E is the midpoint of $\overline{\mathrm{AC}}$

Find : $m(\angle D M E)$

3 [a] In the opposite figure :

$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ are two tangents
to the circle M at B and C

$$
, \mathrm{m}(\angle \mathrm{BAC})=70^{\circ}, \mathrm{BD}=\mathrm{BC}
$$

Find: $m(\angle \mathrm{ABD})$

[b] In the opposite figure :
$\overrightarrow{\mathrm{BA}}$ is a tangent to the circle M at A
, $\mathrm{BM}=10 \mathrm{~cm}$., $\mathrm{BC}=4 \mathrm{~cm}$.
Find : the length of $\overline{\mathrm{AB}}$

4 [a] In the opposite figure :
A circle $\mathrm{M}, \mathrm{MX}=\mathrm{MY}, \mathrm{XB}=5 \mathrm{~cm}$.
$, \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{CD}}$
Find : the length of $\overline{C D}$

[b] In the opposite figure :
ABCD is a quadrilateral in which
$\mathrm{AB}=\mathrm{AD}, \mathrm{m}(\angle \mathrm{ABD})=30^{\circ}$
, $m(\angle C)=60^{\circ}$
Prove that :
ABCD is a cyclic quadrilateral.

5 [a] In the opposite figure :
$\mathrm{AB}=\mathrm{AC}, \mathrm{E} \in \overparen{\mathrm{BC}}$

Prove that :

$\mathrm{m}(\angle \mathrm{AEB})=\mathrm{m}(\angle \mathrm{AEC})$
[b] In the opposite figure :
$\overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle at A
, $\overline{X Y} / / \overline{B C}$
Prove that : $\overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the points A, X and Y

16 Beni Suef Governorate

Answer the following questions: (Calculator is allowed)
1 Choose the correct answer from those given :
(1) The measure of the inscribed angle drawn in a semicircle equals \qquad。
(a) 50
(b) 90
(c) 120
(d) 180
(2) The angle whose measure is 50° complements an angle of measure \qquad。
(a) 310
(b) 130
(c) 50
(d) 40
(3) If M and N are two circles touching externally, their radii lengths are 7 cm . and 12 cm . , then $\mathrm{MN}=$ \qquad cm .
(a) 5
(b) 7
(c) 12
(d) 19
(4) The number of axes of symmetry of the isosceles triangle equals
(a) 3
(b) 2
(c) 1
(d) zero.

5 A rhombus is of area $30 \mathrm{~cm}^{2}$. and the length of one of its diagonals is 12 cm ., then the length of the other diagonal is \qquad cm .
(a) 5
(b) 12
(c) 18
(d) 21

6 In the opposite figure :
$\overrightarrow{\mathrm{AD}}$ is a tangent to the circle passing
through the vertices of $\triangle \mathrm{ABC}$
, then $\mathrm{m}(\angle \mathrm{DAB})=$ \qquad。

(a) 30
(b) 45
(c) 60
(d) 90

2 [a] In the opposite figure :

$\mathrm{AB}=\mathrm{AD}, \mathrm{m}(\angle \mathrm{ADB})=40^{\circ}$
, $\mathrm{m}(\angle \mathrm{BCD})=80^{\circ}$
Prove that : ABCD is a cyclic quadrilateral.
[b] In the opposite figure :

$\overline{\mathrm{AB}}$ is a diameter in the circle M
, $\overrightarrow{\mathrm{AB}} \cap \overrightarrow{\mathrm{CD}}=\{\mathrm{E}\}, m(\overparen{A C})=80^{\circ}$
and $\mathrm{m}(\angle \mathrm{AEC})=20^{\circ}$
Find : $m(\overparen{D C})$

3 [a] In the opposite figure :

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords equal in length in the circle M , X is the midpoint of $\overline{\mathrm{AB}}$
, Y is the midpoint of $\overline{\mathrm{AC}}$
, $\mathrm{m}(\angle \mathrm{CAB})=60^{\circ}$

1 Find : m ($\angle \mathrm{DME}$)
(2) Prove that: $\mathrm{XD}=\mathrm{YE}$
[b] In the opposite figure :
$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ are two tangents to the circle at B and C
, $\mathrm{m}(\angle \mathrm{BDC})=65^{\circ}$
Find : $m(\angle B A C)$

4 [a] In the opposite figure :

$\overline{\mathrm{AB}}$ is a diameter in the circle M
, $\overline{\mathrm{BC}}$ is a tangent-segment to it at B
, E is the midpoint of $\overline{\mathrm{AD}}$
Prove that : EMBC is a cyclic quadrilateral.

[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a chord in the circle M
$, \overline{\mathrm{MC}} / / \overline{\mathrm{AB}}, \overline{\mathrm{BC}} \cap \overline{\mathrm{AM}}=\{\mathrm{E}\}$
, $\mathrm{m}(\angle \mathrm{A})=60^{\circ}$
Find: $m(\angle B)$

5 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{XY}}$ are two parallel chords in the circle, $\mathrm{m}(\overparen{\mathrm{XC}})=\mathrm{m}(\overparen{\mathrm{YC}})$

Prove that: $\mathrm{AC}=\mathrm{BC}$

[b] In the opposite figure :
$\overrightarrow{\mathrm{XA}}$ and $\overrightarrow{\mathrm{XB}}$ are two tangents to the circle at A and B $, \mathrm{m}(\angle \mathrm{AXB})=70^{\circ}, \mathrm{m}(\angle \mathrm{DCB})=125^{\circ}$

Prove that : $\overrightarrow{\mathrm{AB}}$ bisects $\angle \mathrm{DAX}$

17 El-Menia Governorate

Answer the following questions: (Calculator is allowed)

1 Choose the correct answer :

1 The area of a rhombus which the lengths of its diagonals are 6 cm . and 8 cm . equals \qquad cm^{2}.
(a) 2
(b) 14
(c) 24
(d) 48
(2) The measure of the inscribed angle equals \qquad the measure of the central angle subtended by the same arc.
(a) half
(b) twice
(c) quarter
(d) third
$3 \angle \mathrm{~A}$ and $\angle \mathrm{B}$ are two complementary angles, $\mathrm{m}(\angle \mathrm{A})=40^{\circ}$, then $\mathrm{m}(\angle \mathrm{B})=$ \qquad ..
(a) 360
(b) 140
(c) 60
(d) 50
(4) M and N are two circles touching externally, their radii lengths are 3 cm . and 5 cm ., then $\mathrm{MN}=$ \qquad cm .
(a) 3
(b) 5
(c) 8
(d) 2

5 If ABCD is a cyclic quadrilateral, then $m(\angle B A C)=m(\angle$ \qquad
(a) BCA
(b) DBA
(c) BDC
(d) ACD
6. In $\triangle A B C$, if $(A C)^{2}>(A B)^{2}+(B C)^{2}$, then the angle B is \qquad
(a) acute.
(b) obtuse.
(c) right.
(d) straight.

2 [a] In the opposite figure :
$\mathrm{AB}=\mathrm{AC}, \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
, $\overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
Prove that : $\mathrm{MX}=\mathrm{MY}$

[b] In the opposite figure :
ABC is a triangle drawn
inside the circle $\mathrm{M}, \mathrm{m}(\angle \mathrm{MBC})=25^{\circ}$
Find: $m(\angle B A C)$

3] [a] In the opposite figure :
$\mathrm{AB}=\mathrm{AC}, \mathrm{m}(\angle \mathrm{D})=100^{\circ}$

$$
, \mathrm{m}(\angle \mathrm{ACB})=50^{\circ}
$$

Prove that : ABDC is a cyclic quadrilateral.

[b] In the opposite figure :
$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ are two tangents to
the circle and $\mathrm{m}(\angle \mathrm{D})=70^{\circ}$
Find: $m(\angle A)$

4 [a] In the opposite figure :
$\overleftrightarrow{\mathrm{CD}}$ is a tangent to the
circle at C and $\overleftrightarrow{\mathrm{CD}} / / \overrightarrow{\mathrm{AB}}$
Prove that : $\mathrm{AC}=\mathrm{BC}$

[b] In the opposite figure :
$\mathrm{m}(\angle \mathrm{ABE})=110^{\circ}$
and $\mathrm{m}(\angle \mathrm{CAD})=35^{\circ}$
Prove that : $m(\overparen{D A})=m(\overparen{D C})$

5 [a] In the opposite figure :
$\mathrm{AE}=\mathrm{DE}$
Prove that : EC = EB
[b] In the opposite figure :

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords
in the circle M
and $\mathrm{m}(\angle \mathrm{A})=50^{\circ}$
Find: m (reflex $\angle \mathrm{CMB}$)

18. Assiut Governorate

Answer the following questions: (Calculator is permitted)

1 Choose the correct answer :
1 The area of the rhombus whose diagonal lengths are 3 cm . and 4 cm . is cm^{2}
(a) 48
(b) 24
(c) 12
(d) 6
(2) The inscribed angle drawn in a semicircle is
(a) acute.
(b) obtuse.
(c) right.
(d) straight.

3 If $\triangle \mathrm{ABC} \sim \triangle \mathrm{XYZ}, \mathrm{m}(\angle \mathrm{A})=50^{\circ}, \mathrm{m}(\angle \mathrm{B})=60^{\circ}$, then $\mathrm{m}(\angle \mathrm{Z})=$
(a) 110
(b) 70
(c) 60
(d) 50

4 If M and N are two circles touching internally, their radii lengths are 3 cm . and 5 cm ., then $\mathrm{MN}=$ \qquad cm .
(a) 2
(b) 3
(c) 6
(d) 8

5 If the ratio between the perimeters of two squares is $1: 3$, then the ratio between their areas is \qquad
(a) $1: 3$
(b) $3: 1$
(c) $9: 1$
(d) $1: 9$

6 If ABCD is a cyclic quadrilateral, then $\mathrm{m}(\angle \mathrm{A})+\mathrm{m}(\angle \mathrm{C})-80^{\circ}=$ \qquad .. ${ }^{\circ}$
(a) 60
(b) 80
(c) 100
(d) 180

2] [a] In the opposite figure :

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords equal in length in the circle M , X is the midpoint of $\overline{\mathrm{AB}}, \mathrm{Y}$ is the midpoint of $\overline{\mathrm{AC}}$, $\mathrm{m}(\angle \mathrm{CAB})=50^{\circ}$

1 Find with proof : m ($\angle \mathrm{DME}$)

2. Prove that: $\mathrm{XD}=\mathrm{YE}$
[b] In the opposite figure :
$A B C D$ is a quadrilateral inscribed in a circle in which $\mathrm{AB}=\mathrm{DC}$

Prove that: $\mathrm{AC}=\mathrm{BD}$

3. [a] In the opposite figure :
$\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to the circle at B, C , $\mathrm{m}(\angle \mathrm{A})=50^{\circ}$
Find with proof : $\mathrm{m}(\angle \mathrm{BDC})$
[b] In the opposite figure :

$\overline{\mathrm{BC}}$ is a diameter in the circle M
,$\overline{\mathrm{ED}} \perp \overline{\mathrm{BC}}$

Prove that :

1 ABDE is a cyclic quadrilateral.
$2 \mathrm{~m}(\angle \mathrm{CED})=\frac{1}{2} \mathrm{~m}(\overparen{\mathrm{AC}})$

4 [a] In the opposite figure :
M is a circle, $\mathrm{MD}=\mathrm{ME}$
, D is the midpoint of $\overline{\mathrm{AB}}$
, $\overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}, \mathrm{m}(\angle \mathrm{ABC})=65^{\circ}$
Find with proof : m ($\angle B A C$)

[b] In the opposite figure :
ABCD is a quadrilateral inscribed
in the circle $\mathrm{M}, \overrightarrow{\mathrm{BO}} / / \overline{\mathrm{DC}}$
, $\mathrm{m}(\angle \mathrm{EBO})=65^{\circ}, \mathrm{m}(\angle \mathrm{BAD})=120^{\circ}$
Find with proof : $m(\angle A D C)$

5 [a] In the opposite figure :
$\mathrm{m}(\widehat{\mathrm{AB}})=50^{\circ}$
Find with proof :
$1 \mathrm{~m}(\angle \mathrm{ADB})$
2 $\mathrm{m}(\overparen{\mathrm{ADB}})$

[b] In the opposite figure :
$\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to the circle at B, C $, \mathrm{m}(\angle \mathrm{A})=70^{\circ}, \mathrm{m}(\angle \mathrm{CDE})=125^{\circ}$

Prove that :

$1 \mathrm{CB}=\mathrm{CE}$
(2) $\overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABE}$

19 Souhag Governorate

Answer the following questions : (Calculator is permitted)

1 Choose the correct answer :
1 In the cyclic quadrilateral, each two opposite angles are
(a) equal in measure.
(b) supplementary.
(c) alternate.
(d) complementary.

2 The length of the side opposite to the angle of measure 30° in the right-angled triangle equals \qquad the length of the hypotenuse.
(a) $\frac{1}{2}$
(b) $\frac{1}{3}$
(c) $\frac{1}{4}$
(d) 2

3 The inscribed angle drawn in a semicircle is \qquad angle.
(a) an acute
(b) a straight
(c) a right
(d) an obtuse
(4) A rhombus whose two diagonal lengths are $6 \mathrm{~cm} ., 8 \mathrm{~cm}$., then its area is \qquad cm^{2}
(a) 48
(b) 24
(c) 14
(d) 12

5 The measure of the exterior angle of the equilateral triangle equals \qquad .
(a) 60
(b) 108
(c) 120
(d) 135

6 The number of circles passing through three collinear points is \qquad
(a) infinite.
(b) two.
(c) one.
(d) zero.

2 [a] In the opposite figure :

$\overrightarrow{\mathrm{AD}}$ is a tangent to the circle M
, $\overrightarrow{\mathrm{AC}}$ intersects the circle M at B, C , $\mathrm{m}(\angle \mathrm{A})=56^{\circ}$ and H is the midpoint of $\overline{\mathrm{BC}}$

Find with proof : m ($\angle \mathrm{DMH}$)

[b] In the opposite figure :
ABCD is a quadrilateral, $\mathrm{AB}=\mathrm{AD}$
, $\mathrm{m}(\angle \mathrm{ABD})=30^{\circ}, \mathrm{m}(\angle \mathrm{C})=60^{\circ}$
Prove that : ABCD is a cyclic quadrilateral.

3 [a] In the opposite figure :
A circle is drawn touching the sides
of the triangle $\mathrm{ABC}, \overline{\mathrm{AB}}, \overline{\mathrm{BC}}, \overline{\mathrm{AC}}$
at $\mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{AD}=5 \mathrm{~cm}$.
, $\mathrm{BE}=4 \mathrm{~cm} ., \mathrm{CF}=3 \mathrm{~cm}$.

Find: the perimeter of $\triangle \mathrm{ABC}$
[b] In the opposite figure :
$\mathrm{E} \in \overrightarrow{\mathrm{AB}}, \mathrm{E} \notin \overline{\mathrm{AB}}, \mathrm{m}(\widehat{\mathrm{AB}})=110^{\circ}$
, $\mathrm{m}(\angle \mathrm{CBE})=85^{\circ}$
Find : m ($\angle \mathrm{BDC}$)

4 [a] In the opposite figure :
$\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to the circle at B, C
, $\mathrm{m}(\angle \mathrm{A})=70^{\circ}$
, $\mathrm{m}(\angle \mathrm{CDE})=125^{\circ}$
Prove that : $\mathrm{CB}=\mathrm{CE}$

[b] In the opposite figure :
ABCD is a rectangle inscribed
in a circle, the chord $\overline{\mathrm{CE}}$
is drawn where $\mathrm{CE}=\mathrm{CD}$
Prove that: $\mathrm{AE}=\mathrm{BC}$

5 [a] In the opposite figure :
ABC is a triangle inscribed in
the circle M in which $\mathrm{m}(\angle B)=m(\angle C)$,
X is the midpoint of $\overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
Prove that : $\mathrm{MX}=\mathrm{MY}$

[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle M
, $\mathrm{m}(\angle \mathrm{ACD})=115^{\circ}$
Find : m ($\angle \mathrm{DAB})$

20 Qena Governorate

Answer the following questions: (Calculators are permitted)

1 Choose the correct answer from those given :
1 The length of a semicircle equals \qquad ..
(a) πr
(b) 180°
(c) $\frac{1}{2} \pi r$
(d) $2 \pi r$

2 The sum of measures of the interior angles of a triangle equals
(a) 180°
(b) 360°
(c) 540°
(d) 720°

3 The \qquad is a rhombus, one of its angles is a right angle.
(a) rectangle
(b) square
(c) parallelogram
(d) trapezium

4 The measure of the inscribed angle equals \qquad the measure of the central angle, subtended by the same arc.
(a) $\frac{1}{2}$
(b) 2
(c) $\frac{1}{3}$
(d) $\frac{1}{4}$

5 The measure of the exterior angle of the equilateral triangle equals
(a) 90°
(b) 180°
(c) 120°
(d) 60°

6 The number of the common tangents of two circles touching externally equals
(a) 1
(b) 2
(c) 3
(d) 4

2 [a] Draw $\overline{\mathrm{AB}}$ where $\mathrm{AB}=5 \mathrm{~cm}$., then draw a circle passing through the two points A and B, the length of its radius is 3 cm ., using your geometric instruments (Don't remove the arcs) How many circles can be drawn?
[b] In the opposite figure :
Two concentric circles of centre $M, \overline{A B}$ and $\overline{\mathrm{CD}}$ are two chords in the greater circle and tangent-segments to the smaller circle at E and F Prove that : $A B=C D$

3 [a] In the opposite figure :
$\overline{\mathrm{AD}} / / \overrightarrow{\mathrm{BC}}, \mathrm{F} \in \overrightarrow{\mathrm{BC}}, \overrightarrow{\mathrm{CE}}$ bisects $\angle \mathrm{DCF}$,
$\mathrm{m}(\angle \mathrm{B})=70^{\circ}, \mathrm{m}(\angle \mathrm{ECF})=55^{\circ}$
Prove that : ABCD is a cyclic quadrilateral.

[b] In the opposite figure :
A, B and C are three points lie on the circle M
where: $m(\overparen{\mathrm{AB}})=\mathrm{m}(\overparen{\mathrm{BC}})=\mathrm{m}(\widehat{\mathrm{CA}})$
1 Find by proof : m ($\angle \mathrm{ABM}$)
(2) Prove that: $\triangle \mathrm{ABC}$ is an equilateral triangle.

4 [a] In the opposite figure :

$\overline{\mathrm{AC}}$ and $\overline{\mathrm{BD}}$ are two chords in the circle M
, $\overline{\mathrm{AC}} \cap \overline{\mathrm{BD}}=\{\mathrm{E}\}, \mathrm{m}(\angle \mathrm{AED})=110^{\circ}, \mathrm{m}(\angle \mathrm{B})=80^{\circ}$
Find by proof : $m(\angle \mathrm{D}), \mathrm{m}(\overparen{\mathrm{AD}})$

[b] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent-segments to the circle M at B and $\mathrm{C}, \mathrm{m}(\angle \mathrm{ACB})=65^{\circ}$

Find by proof : m $(\angle \mathrm{A}), \mathrm{m}(\angle \mathrm{D})$

5 [a] In the opposite figure :

$\overline{\mathrm{AB}}$ is a tangent-segment to the circle M at B
, $\overline{\mathrm{DC}}$ is a chord in the circle $M, \overrightarrow{\mathrm{DC}} \cap \overrightarrow{\mathrm{BA}}=\{\mathrm{A}\}$
, E is the midpoint of $\overline{\mathrm{CD}}$
, $\overrightarrow{\mathrm{EM}} \cap$ the circle $\mathrm{M}=\{\mathrm{F}\}, \mathrm{m}(\angle \mathrm{A})=30^{\circ}$

1 Prove that : ABME is a cyclic quadrilateral.
2. Find: $\mathrm{m}(\overparen{\mathrm{BF}})$

[b] In the opposite figure :

$\overleftrightarrow{\mathrm{LX}}$ is a tangent to the circle at $\mathrm{X}, \overline{\mathrm{EF}} / / \overline{\mathrm{YZ}}$, where $\overline{\mathrm{YZ}}$ is a chord in the circle M

Prove that : $\overrightarrow{\mathrm{XL}}$ is a tangent to the circle passing through the points X, E and F

21 Luxor Governorate

Answer the following questions :

1 Choose the correct answer from those given :
1 If the diameter length of a circle is 8 cm . and the straight line L is at a distance of 4 cm . from its centre, then L is \qquad the circle.
(a) a tangent to
(b) a secant to
(c) outside
(d) an axis of symmetry of
(2) The measure of the inscribed angle which is drawn in $\frac{1}{4}$ a circle equals
(a) 45°
(b) 90°
(c) 120°
(d) 135°

3 The two tangents to a circle at the two endpoints of a diameter of it are \qquad
(a) parallel.
(b) perpendicular.
(c) intersecting.
(d) coincident.
(4) The sum of measures of the accumulative angles at a point is \qquad
(a) 630°
(b) 360°
(c) 603°
(d) 306°

5 The area of a square is $25 \mathrm{~cm}^{2}$, then its perimeter is \qquad cm .
(a) 5
(b) 10
(c) 15
(d) 20

6 The measure of the supplementary angle of the angle whose measure is 60° equals \qquad
(a) 30°
(b) 90°
(c) 120°
(d) 180°

2 [a] In the opposite figure :
$\mathrm{m}(\angle \mathrm{A})=30^{\circ}, \mathrm{m}(\overparen{\mathrm{CE}})=120^{\circ}$
,$m(\overparen{\mathrm{BC}})=m(\overparen{\mathrm{DE}})$
1 Find : m ($\overparen{\mathrm{BD}})$
(2) Prove that: $\mathrm{AB}=\mathrm{AD}$

[b] In the opposite figure :
$\mathrm{AB}=\mathrm{AC}, \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
, Y is the midpoint of $\overline{\mathrm{AC}}, \mathrm{m}(\angle \mathrm{A})=60^{\circ}$
1 Find : m ($\angle \mathrm{DME}$)
(2) Prove that: $\mathrm{XD}=\mathrm{YE}$

3 [a] In the opposite figure :
ABCD is a quadrilateral, $\mathrm{AB}=\mathrm{AD}$
, $\mathrm{m}(\angle \mathrm{ABD})=35^{\circ}, \mathrm{m}(\angle \mathrm{C})=70^{\circ}$
Prove that : ABCD is a cyclic quadrilateral.
[b] In the opposite figure :

$\overline{\mathrm{AB}}$ is a diameter of the circle M
, $\mathrm{m}(\angle \mathrm{CAB})=30^{\circ}, \mathrm{D}$ is the midpoint of $\overparen{\mathrm{AC}}$
Find: $1 \mathrm{~m}(\angle \mathrm{BDC})$
(2) $\mathrm{m}(\overparen{\mathrm{AD}})$

4 [a] In the opposite figure :
The sides of $\triangle \mathrm{ABC}$ touches the
circle externally at $\mathrm{D}, \mathrm{E}, \mathrm{O}$
If $\mathrm{AD}=5 \mathrm{~cm} ., \mathrm{BE}=4 \mathrm{~cm} ., \mathrm{CO}=3 \mathrm{~cm}$.
Find: the perimeter of $\triangle \mathrm{ABC}$

[b] In the opposite figure :
$\overrightarrow{\mathrm{AO}}$ is a tangent to the circle
at $\mathrm{A}, \overrightarrow{\mathrm{AO}} / / \overline{\mathrm{DE}}$

Prove that :

DEBC is a cyclic quadrilateral.

5 [a] In the opposite figure :
$A B C D$ is a quadrilateral inscribed
in a circle, where $\mathrm{m}(\angle \mathrm{ABE})=100^{\circ}$
, $\mathrm{m}(\angle \mathrm{CAD})=40^{\circ}$

Prove that : $\mathrm{m}(\overparen{\mathrm{CD}})=\mathrm{m}(\overparen{\mathrm{AD}})$

[b] In the opposite figure :

$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ are two tangents to the circle at B and $\mathrm{C}, \mathrm{m}(\angle \mathrm{A})=50^{\circ}$

Find : m $(\angle \mathrm{BEC})$

22 Aswan Governorate

Answer the following questions :

1 Choose the correct answer from those given :
1 The area of the square whose side length is 6 cm . is \qquad cm^{2}
(a) 12
(b) 24
(c) 36
(d) 60
(2) M and N are two circles touching externally, their radii lengths are 3 cm . and 5 cm ., then $\mathrm{MN}=$ \qquad cm .
(a) 5
(b) 8
(c) 2
(d) 3
(3) The angle whose measure is 50° complements an angle whose measure is \qquad .\circ
(a) 40
(b) 60
(c) 90
(d) 180

4 If ABCD is a cyclic quadrilateral, $\mathrm{m}(\angle \mathrm{A})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{C})$, then $\mathrm{m}(\angle \mathrm{A})=$ \qquad .${ }^{\circ}$
(a) 90
(b) 80
(c) 60
(d) 50

5 In $\triangle A B C$, if $(A C)^{2}=(A B)^{2}+(B C)^{2}$, then $\angle B$ is \qquad
(a) an acute
(b) a right
(c) an obtuse
(d) a straight

6 In the opposite figure :
M is a circle, if $\mathrm{m}(\overparen{\mathrm{BC}})=80^{\circ}$
, then $m(\angle A)=$ \qquad .
(a) 10
(b) 20
(c) 30
(d) 40

2 [a] In the opposite figure :
$\overrightarrow{\mathrm{AD}}$ is a tangent to the circle M at D
, $\overrightarrow{\mathrm{AB}}$ intersects the circle at B and C , $\mathrm{m}(\angle \mathrm{A})=50^{\circ}, \mathrm{E}$ is the midpoint of $\overline{\mathrm{BC}}$

Find : m ($\angle \mathrm{DME})$

[b] In the opposite figure :
$\triangle \mathrm{ABC}$ is a triangle inscribed in
the circle $\mathrm{M}, \mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{C})$
, X is the midpoint of $\overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
Prove that : $\mathrm{MX}=\mathrm{MY}$

3 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter of the circle M
, $\mathrm{m}(\angle \mathrm{DCB})=60^{\circ}$
Find : m $(\angle \mathrm{ABD})$
[b] In the opposite figure :

$\mathrm{AB}=\mathrm{AC}, \mathrm{m}(\angle \mathrm{BDC})=80^{\circ}$
, $\mathrm{m}(\angle \mathrm{ACB})=50^{\circ}$

Prove that :

The figure $A B C D$ is a cyclic quadrilateral.

4 [a] In the opposite figure :
ABC is a triangle inscribed in the circle M
, $\mathrm{m}(\angle \mathrm{A})=30^{\circ}$
1 Find: $\mathrm{m}(\angle \mathrm{BMC})$
2 Prove that: $\triangle \mathrm{MBC}$ is an equilateral triangle.

[b] In the opposite figure :
$\mathrm{m}(\angle \mathrm{ADB})=30^{\circ}$
, $\mathrm{m}(\angle \mathrm{C})=70^{\circ}$
Find : m $(\angle \mathrm{ABD})$

5 [a] In the opposite figure :
$\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to the circle at B, C and $\mathrm{m}(\angle \mathrm{BDC})=70^{\circ}$

Find : $m(\angle A)$
[b] In the opposite figure :

The inscribed circle M of $\triangle A B C$ touches its sides $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}$ and $\overline{\mathrm{AC}}$ at D
, E and F respectively.
If $\mathrm{AD}=5 \mathrm{~cm} ., \mathrm{BE}=4 \mathrm{~cm}$. and $\mathrm{CF}=3 \mathrm{~cm}$.
, find : the perimeter of $\triangle \mathrm{ABC}$

\qquad

23 New Valley Governorate

$\xrightarrow{\frac{7}{11}}$

Answer the following questions: (Calculator is allowed)

1 Choose the correct answer from those given :
1 The circumference of the circle of radius length 7 cm . is cm .
(a) 11
(b) 22
(c) 44
(d) 154

2 In the opposite figure :
If $m(\angle B)=60^{\circ}, m(\angle A C D)=130^{\circ}$
, $C \in \overline{\mathrm{BD}}$, then $\mathrm{m}(\angle \mathrm{A})=$ \qquad
(a) 40
(b) 50
(c) 60
(d) 70

3 The measure of the inscribed angle drawn in a semicircle is \qquad ${ }^{\circ}$
(a) 45
(b) 90
(c) 120
(d) 180

4 In the opposite figure :
A circle of centre M
If MABC is a rectangle
, then the radius length of the circle equals \qquad
(a) BC
(b) AC
(c) AM
(d) AB

5 The straight line perpendicular to any chord from its midpoint is \qquad of the circle.
(a) a chord
(b) a radius
(c) a diameter
(d) an axis of symmetry

6 The number of cyclic quadrilaterals in the opposite figure is
(a) 1
(b) 3
(c) 6
(d) 9

2 [a] In the opposite figure :
If $M D=M E, m(\angle B)=65^{\circ}$
$, \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}$
, then find : m $(\angle \mathrm{A})$

[b] In the opposite figure :
ABCD is a quadrilateral in which $\mathrm{m}(\angle \mathrm{A})=120^{\circ}$
, $\mathrm{BC}=\mathrm{CD}=\mathrm{DB}$
Prove that : ABCD is a cyclic quadrilateral.

3 [a] In the opposite figure :

M is a circle, $\mathrm{m}(\angle \mathrm{BMC})=80^{\circ}$
Find: $1 \mathrm{~m}(\angle \mathrm{~A})$
2 $\mathrm{m}(\angle \mathrm{MBC})$

[b] In the opposite figure :

M is a circle with radius length 5 cm .
, $\mathrm{YZ}=8 \mathrm{~cm}$.
, $\overleftrightarrow{X Y}$ is a tangent to the circle M at X
Find : the length of $\overline{X Y}$

4 [a] In the opposite figure :
$\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents
to the circle at B, C
, $\mathrm{m}(\angle \mathrm{D})=70^{\circ}$

Find : $m(\angle A)$
[b] In the opposite figure :
A circle is drawn touching the sides of the triangle ABC

$$
\begin{aligned}
& , \overline{\mathrm{AB}}, \overline{\mathrm{BC}}, \overline{\mathrm{CA}} \text { at } \mathrm{D}, \mathrm{E}, \mathrm{~F} \\
& , \mathrm{AD}=5 \mathrm{~cm} ., \mathrm{BE}=2 \mathrm{~cm} ., \mathrm{CF}=3 \mathrm{~cm} .
\end{aligned}
$$

Find : the perimeter of $\triangle \mathrm{ABC}$

5 [a] In the opposite figure :
If $\mathrm{m}(\angle \mathrm{C})=20^{\circ}$
, $\mathrm{m}(\overparen{\mathrm{CH}})=140^{\circ}$
, find :
$1 \mathrm{~m}(\angle \mathrm{H})$
$2 \mathrm{~m}(\overparen{\mathrm{BD}})$
$3 \mathrm{~m}(\angle \mathrm{~A})$

[b] In the opposite figure :
$\mathrm{m}(\angle \mathrm{ABH})=100^{\circ}$
, $m(\angle \mathrm{CAD})=40^{\circ}$
Prove that : $m(\overparen{C D})=m(\overparen{A D})$

24 South Sinai Governorate

Answer the following questions :

1 Choose the correct answer from those given :
1 The measure of the inscribed angle drawn in a semicircle equals
(a) 45°
(b) 90°
(c) 120°
(d) 80°

2 The angle of tangency is included between
(a) two chords.
(b) two tangents.
(c) a chord and a tangent.
(d) a chord and a diameter.
(3) ABCD is a cyclic quadrilateral, $\mathrm{m}(\angle \mathrm{A})=120^{\circ}$, then $\mathrm{m}(\angle \mathrm{C})=$ \qquad
(a) 60
(b) 120
(c) 90
(d) 180
(4) M and N are two circles touching internally, their radii lengths are 5 cm . and 9 cm ., then $\mathrm{MN}=$ \qquad cm .
(a) 14
(b) 4
(c) 5
(d) 9

5 The number of symmetry axes of any circle is
(a) zero.
(b) 1
(c) an infinite number.
(d) 3

6 In the opposite figure :
A circle of centre M in which $\overline{A B} / / \overline{C D}$
, then \qquad
(a) $\mathrm{m}(\overparen{\mathrm{AC}})=\mathrm{m}(\overparen{\mathrm{BD}})$
(b) $\mathrm{AB}=\mathrm{CD}$
(c) $\overline{\mathrm{AC}} / / \overline{\mathrm{BD}}$
(d) $\mathrm{m}(\overparen{\mathrm{AC}})>\mathrm{m}(\overparen{\mathrm{BD}})$

2] [a] In the opposite figure :
$\mathrm{m}(\angle \mathrm{CMB})=120^{\circ}$
Find : m $(\angle \mathrm{BAC})$

[b] In the opposite figure :
$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ are tangents to the circle M
, $\mathrm{m}(\angle \mathrm{BAC})=50^{\circ}$
Find:
$1 \mathrm{~m}(\angle \mathrm{ABC})$
(2) $\mathrm{m}(\angle \mathrm{ACB})$

3 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords equal in length in the circle M, X is the midpoint of $\overline{A B}$
, Y is the midpoint of $\overline{\mathrm{AC}}, \mathrm{m}(\angle \mathrm{HMD})=120^{\circ}$
1 Find : m ($\angle \mathrm{BAC}$)

(2) Prove that: $\mathrm{DX}=\mathrm{HY}$
[b] In the opposite figure :
$\mathrm{AB}=\mathrm{AC}, \mathrm{m}(\angle \mathrm{BDC})=60^{\circ}$
and $\mathrm{m}(\angle \mathrm{ACB})=30^{\circ}$
Prove that : ABDC is a cyclic quadrilateral.

4 [a] In the opposite figure :
$\mathrm{m}(\overparen{\mathrm{CH}})=80^{\circ}$
, $\mathrm{m}(\angle \mathrm{CAH})=30^{\circ}$
Find : $m(\overparen{B D})$

[b] In the opposite figure :
$\mathrm{AC}=\mathrm{CD}$
, $\mathrm{m}(\angle \mathrm{ADC})=50^{\circ}$
Find: $m(\angle C B D)$

5 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle M , $\overrightarrow{\mathrm{CD}}$ is a tangent to the circle M at C , $\overrightarrow{\mathrm{CD}} / / \overrightarrow{\mathrm{AB}}$

Find: $m(\angle \mathrm{ABC})$ in degrees.

Geometry

[b] In the opposite figure :

$\mathrm{AB}=\mathrm{AD}, \mathrm{m}(\angle \mathrm{BCH})=60^{\circ}$

Prove that :

the triangle ABD is equilateral.

25 North Sinai Governorate

Answer the following questions :

1 Choose the correct answer from those given :
1 M and N are two circles of radii lengths 9 cm . and 4 cm . respectively, $\mathrm{MN}=5 \mathrm{~cm}$., then the two circles are \qquad
(a) touching externally.
(b) touching internally.
(c) intersecting.
(d) distant.

2 The length of the side opposite to the angle of measure 30° in the right-angled triangle equals \qquad the length of the hypotenuse.
(a) $\frac{1}{2}$
(b) $\frac{\sqrt{3}}{2}$
(c) $\sqrt{2}$
(d) 2

In the opposite figure :
$\mathrm{m}(\angle \mathrm{AMC})=120^{\circ}$, then $\mathrm{m}(\angle \mathrm{ABC})=$ \qquad .
(a) 360
(b) 240
(c) 90
(d) 60

(4) A rhombus whose diagonal lengths are $6 \mathrm{~cm} ., 8 \mathrm{~cm}$., then its area is \qquad cm^{2}
(a) 2
(b) 12
(c) 24
(d) 48

5 In the opposite figure :
ABCD is a cyclic quadrilateral, $\mathrm{m}(\angle \mathrm{B})=80^{\circ}$, then $m(\angle \mathrm{D})=$ \qquad .
(a) 10
(b) 100
(c) 80
(d) 180

6 The number of symmetry axes of any circle is
(a) 1
(b) 2
(c) 3
(d) an infinite number.

2 [a] In the opposite figure :
M is a circle in which : D is the midpoint of $\overline{\mathrm{AB}}$
, E is the midpoint of $\overline{\mathrm{AC}}, \mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{C})$
Prove that : $\mathrm{MD}=\mathrm{ME}$

[b] In the opposite figure :
M is a circle of radius length 6 cm .
, $\mathrm{XY}=8 \mathrm{~cm} ., \overline{\mathrm{MY}} \cap$ the circle $\mathrm{M}=\{\mathrm{F}\}$
, $\mathrm{FY}=4 \mathrm{~cm}$.
Prove that : $\overleftrightarrow{X Y}$ is a tangent to the circle M at X

3 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ are two chords in the circle M
, $\overline{\mathrm{AB}} \cap \overline{\mathrm{CD}}=\{\mathrm{E}\}, \mathrm{m}(\angle \mathrm{DEB})=110^{\circ}$
,$m(\overparen{\mathrm{AC}})=100^{\circ}$

Find: $m(\angle D C B)$
[b] In the opposite figure :
$A B C D$ is a quadrilateral inscribed in a circle M
, $\mathrm{M} \in \overline{\mathrm{AB}}, \mathrm{CB}=\mathrm{CD}, \mathrm{m}(\angle \mathrm{BCD})=140^{\circ}$
Find : $m(\angle A), m(\angle A D C)$

4 [a] In the opposite figure :

$\overline{\mathrm{AB}}$ is a diameter in the circle M
, X is the midpoint of $\overline{\mathrm{AC}}, \overrightarrow{\mathrm{YB}}$ is a tangent to the circle M
, $\overrightarrow{\mathrm{XM}} \cap \overrightarrow{\mathrm{BY}}=\{\mathrm{Y}\}$
Prove that : AXBY is a cyclic quadrilateral.

[b] Find the length and the measure of the arc, which is opposite to an inscribed angle of measure 45° in a circle whose radius length is 7 cm . (Consider $\pi=\frac{22}{7}$)

5 [a] In the opposite figure :

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are tangent-segments to the circle at B and $C, m(\angle B A C)=60^{\circ}, m(\angle C D E)=120^{\circ}$

Prove that: BCE is an equilateral triangle.

\qquad

[b] In the opposite figure :

ABC is a right-angled triangle at A ,
$\mathrm{AC}=3 \mathrm{~cm} ., \mathrm{BC}=6 \mathrm{~cm} ., \mathrm{m}(\angle \mathrm{BAD})=60^{\circ}$
Prove that : $\overrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the vertices of $\triangle \mathrm{ABC}$

Red Sea Governorate

Answer the following questions :

1 Choose the correct answer from those given :
1 The area of the circle whose radius length is 3 cm . equals \qquad
(a) 9π
(b) 6π
(c) 12π
(d) 15π

2 The number of symmetry axes of the circle is
(a) zero.
(b) 1
(c) 2
(d) an infinite number.
(3) The number of circles which pass through three non-collinear points is
(a) 1
(b) 2
(c) 3
(d) zero
(4) M and N are two circles touching externally, the lengths of their radii are 5 cm . and 3 cm ., then $\mathrm{MN}=$ \qquad cm .
(a) 8
(b) 2
(c) 9
(d) 6

5 In the opposite figure :
$\mathrm{m}(\angle \mathrm{A})=$ \qquad -
(a) 80
(b) 100
(c) 110
(d) 90

6 In the opposite figure :
$\mathrm{m}(\overparen{\mathrm{BC}})=100^{\circ}$, then $\mathrm{m}(\angle \mathrm{A})=$ \qquad ..
(a) 100
(b) 90
(c) 50
(d) 40

2 [a] In the opposite figure :
M is the centre of the circle, D and E are the midpoints of $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ respectively, $\mathrm{m}(\angle \mathrm{A})=70^{\circ}$ Find : m ($\angle \mathrm{DME}$)

[b] In the opposite figure :

$\overline{\mathrm{AB}} \cap \overline{\mathrm{CD}}=\{\mathrm{E}\}$
$, m(\overparen{\mathrm{AC}})=50^{\circ}, \mathrm{m}(\widehat{\mathrm{BD}})=100^{\circ}$
Find: m $(\angle \mathrm{AEC})$

3. [a] In the opposite figure :
$\mathrm{m}(\angle \mathrm{BAC})=50^{\circ}, \mathrm{m}(\angle \mathrm{BCA})=35^{\circ}$
, $\mathrm{m}(\angle \mathrm{D})=85^{\circ}$
Prove that: $A B C D$ is a cyclic quadrilateral.

[b] In the opposite figure :
A circle $\mathrm{M}, \mathrm{m}(\angle \mathrm{MBC})=40^{\circ}$
Find: $m(\angle A)$

4 [a] In the opposite figure :
A circle M is drawn touching the sides of $\triangle \mathrm{ABC}$ at D, E and $\mathrm{F}, \mathrm{BE}=5 \mathrm{~cm}$.
, $\mathrm{AD}=3 \mathrm{~cm} ., \mathrm{CF}=4 \mathrm{~cm}$.
Find : the perimeter of $\triangle \mathrm{ABC}$

[b] In the opposite figure :
M is the centre of the circle
, $\overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}$
, $\mathrm{MD}=\mathrm{ME}, \mathrm{m}(\angle \mathrm{B})=70^{\circ}$
Find: $\mathrm{m}(\angle \mathrm{A})$

5 [a] In the opposite figure :
$\mathrm{E} \in \overrightarrow{\mathrm{CB}}, \mathrm{m}(\angle \mathrm{ABE})=100^{\circ}$
, $\mathrm{m}(\angle \mathrm{CAD})=40^{\circ}$
Prove that: $m(\widehat{C D})=m(\widehat{\mathrm{AD}})$

[b] In the opposite figure :
$\overleftrightarrow{\mathrm{AX}}$ is a common tangent to the two circles touching internally at A
Prove that : $\overline{\mathrm{BD}} / / \overline{\mathrm{CE}}$

27 Matrouh Governorate

Answer the following questions :

1 Choose the correct answer from those given :
1 The two opposite angles in the cyclic quadrilateral are
(a) equal in measure.
(b) complementary.
(c) supplementary.
(d) alternate.

2 The circumference of a circle equals \qquad
(a) πr
(b) $2 \pi r$
(c) πr^{2}
(d) 2π
(3) The measure of the inscribed angle is \qquad the measure of the subtended arc.
(a) $\frac{1}{4}$
(b) $\frac{1}{3}$
(c) $\frac{1}{5}$
(d) $\frac{1}{2}$

4 The square whose side length is 4 cm ., its area is \qquad cm^{2}.
(a) 4
(b) 8
(c) 16
(d) 24

5 The tangent to a circle of diameter length 6 cm . is at a distance of \qquad cm . from its centre.
(a) 6
(b) 12
(c) 3
(d) 2
(6) ABC is a right-angled triangle at B , then $(\mathrm{AB})^{2}+(\mathrm{BC})^{2}=$
(a) $(\mathrm{AC})^{2}$
(b) $(\mathrm{AB})^{2}$
(c) $(\mathrm{BC})^{2}$
(d) $2(\mathrm{AC})^{2}$

2 [a] In the opposite figure :
M is a circle, $\overline{A B}$ is a tangent-segment to the circle M at A , $\mathrm{m}(\angle \mathrm{B})=30^{\circ}$

Find : $m(\angle \mathrm{ADB})$

[b] In the opposite figure :
$A B C D$ is a quadrilateral in which $A B=A D$
, $\mathrm{m}(\angle \mathrm{ABD})=30^{\circ}$ and $\mathrm{m}(\angle \mathrm{C})=60^{\circ}$
Prove that : ABCD is a cyclic quadrilateral.

3 [a] In the opposite figure :
$\mathrm{E} \in \overrightarrow{\mathrm{AB}}, \mathrm{E} \notin \overline{\mathrm{AB}}, \mathrm{m}(\widehat{\mathrm{AB}})=110^{\circ}$
, $\mathrm{m}(\angle \mathrm{CBE})=85^{\circ}$
Find : m $(\angle \mathrm{BDC})$

[b] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords equal in length in the circle M, X is the midpoint of $\overline{\mathrm{AB}}$
, Y is the midpoint of $\overline{\mathrm{AC}}, \mathrm{m}(\angle \mathrm{CAB})=70^{\circ}$
1 Calculate : m (\angle DME)

2 Prove that: $\mathrm{XD}=\mathrm{YE}$
4 [a] In the opposite figure :
$\overrightarrow{\mathrm{BD}}$ is a tangent to the circle M
, $\mathrm{m}(\angle \mathrm{BAM})=30^{\circ}$
Find : $m(\angle A B D)$ angle of tangency.

[b] In the opposite figure :
$\mathrm{AB}=\mathrm{AC}, \mathrm{E} \in \overparen{\mathrm{BC}}$

Prove that :

$\mathrm{m}(\angle \mathrm{AEB})=\mathrm{m}(\angle \mathrm{AEC})$

5 [a] Complete the following :

1 The line of centres of two intersecting circles is \qquad to the common chord and \qquad it.

2 In the same circle, the measures of all inscribed angles subtended by the same arc are \qquad
[b] In the opposite figure :
$\overrightarrow{\mathrm{XA}}$ and $\overrightarrow{\mathrm{XB}}$ are two tangents to the circle at A and $\mathrm{B}, \mathrm{m}(\angle \mathrm{AXB})=70^{\circ}$
, $\mathrm{m}(\angle \mathrm{DCB})=125^{\circ}$
Prove that : $\overrightarrow{\mathrm{AB}}$ bisects $\angle \mathrm{DAX}$

Answers of governorates' examinations of geometry

1 Cairo

1
1 d 2 b 3a $4 \mathrm{~d} \quad 5 \mathrm{c} \quad 6 \mathrm{~b}$

2

[a] The measure of the are $=\frac{1}{4} \times 360^{\circ}=90^{\circ}$, the length of the arc $=\frac{1}{4} \times 2 \times \frac{22}{7} \times 14=22 \mathrm{~cm}$.
[b] $\because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments
$\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{m}(\angle \mathrm{ACB})=\mathrm{m}(\angle \mathrm{ABC})=\frac{180^{\circ}-80^{\circ}}{2}=50^{\circ}$
,$\because \overline{\mathrm{MC}}$ is a radius $\therefore \overline{\mathrm{MC}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{ACM})=90^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BCM})=90^{\circ}-50^{\circ}=40^{\circ}$
(The req.)

3

[a]

\therefore We can draw two circles.
[b] $\because \mathrm{m}(\overparen{\mathrm{XY}})=\mathrm{m}(\angle \mathrm{XMY})=130^{\circ}$
(First req.)
,$\because m(\angle X Z Y)=\frac{1}{2} m(\widehat{X Y})=\frac{1}{2} \times 130^{\circ}=65^{\circ}$
(Second req.)
$\therefore \mathrm{m}(\angle \mathrm{LZX})=180^{\circ}-65^{\circ}=115^{\circ}$
In \triangle ZXL: : $\because \mathrm{ZL}=\mathrm{ZX}$
$\therefore \mathrm{m}(\angle \mathrm{L})=\mathrm{m}(\angle \mathrm{LXZ})=\frac{180^{\circ}-115^{\circ}}{2}=32^{\circ} 30$
(Third req.)

4

[a] $\because \overrightarrow{\mathrm{HX}}$ is a tangent to the circle M

$$
\therefore \overrightarrow{\mathrm{MX}} \perp \overrightarrow{\mathrm{HX}} \quad \therefore \mathrm{~m}(\angle \mathrm{HXM})=90^{\circ}
$$

,$\because \overline{\mathrm{AB}}$ is a common chord
, $\overrightarrow{\mathrm{MN}}$ is the line of centres
$\therefore \overline{\mathrm{AB}} \perp \overrightarrow{\mathrm{MN}} \quad \therefore \mathrm{m}(\angle \mathrm{HYM})=90^{\circ}$
$\therefore \mathrm{m}(\angle H X M)+\mathrm{m}(\angle H Y M)=90^{\circ}+90^{\circ}=180^{\circ}$
\therefore HXMY is a cyclic quadrilateral. (Q.E.D.)
[b] Const : Draw $\overline{\mathrm{BD}}$
Proof: $\because \overrightarrow{\mathrm{AB}}$ is a tangent
$\therefore \mathrm{m}(\angle \mathrm{EBD})$
$=\frac{1}{2} \mathrm{~m}(\widehat{\mathrm{BD}})=55^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ABD})=180^{\circ}-55^{\circ}$

$$
=125^{\circ}
$$

,$\because m(\angle \mathrm{D})=\frac{1}{2} \mathrm{~m}(\overparen{B C})=20^{\circ}$
$\therefore \ln \triangle \mathrm{ABD}$:
$\mathrm{m}(\angle \mathrm{A})=180^{\circ}-\left(125^{\circ}+20^{\circ}\right)=35^{\circ}$ (The req.)

5

[a] $\because \mathrm{D}$ is the midpoint of $\overline{\mathrm{XY}}$
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{XY}} \quad \therefore \mathrm{m}(\angle \mathrm{MDX})=90^{\circ}$
,$\because H$ is the midpoint of $\overline{X Z}$
$\therefore \overline{\mathrm{MH}} \perp \overline{\mathrm{XZ}}$
$\therefore \mathrm{m}(\angle \mathrm{MHX})=90^{\circ}$
,$\because M D=M H$
$\therefore \mathrm{XY}=\mathrm{XZ}$
From the quadrilateral XDMH :
$\therefore \mathrm{m}(\angle \mathrm{X})=360^{\circ}-\left(90^{\circ}+90^{\circ}+120^{\circ}\right)=60^{\circ}$
From (1), (2):
$\therefore \triangle X Y Z$ is an equilateral triangle. (Q.E.D.)
[b] $\because \overrightarrow{\mathrm{XY}} / / \overline{\mathrm{DH}}, \overrightarrow{\mathrm{XZ}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{XHD})=\mathrm{m}(\angle \mathrm{YXH})$ (alternate angles) (1)
,$\because \mathrm{m}(\angle \mathrm{L})$ (inscribed) $=\mathrm{m}(\angle \mathrm{YXZ})($ tangency $)$
From (1) and (2) : $\therefore \mathrm{m}(\angle \mathrm{L})=\mathrm{m}(\angle \mathrm{XHD})$
$\therefore \mathrm{DHZL}$ is a cyclic quadrilateral.
(Q.E.D.)

1
$1 \mathrm{~d} \quad 2 \mathrm{~b}$ (c 4a 5 c b b

!

[a] $\because \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$ $\therefore \mathrm{m}(\angle \mathrm{MDA})=90^{\circ}$
, $\because \mathrm{H}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MH}} \perp \overline{\mathrm{AC}}$

$$
\therefore \mathrm{m}(\mathrm{MHA})=90^{\circ}
$$

From the quadrilateral ADMH :
$\therefore \mathrm{m}(\angle \mathrm{DMH})=360^{\circ}-\left(90^{\circ}+90^{\circ}+60^{\circ}\right)$

$$
=120^{\circ}
$$

(The req)
[b] $\because m(\angle \mathrm{D})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{AMB})$
(inscribed and central angles subtended by $\overparen{A B}$)
$\therefore m(\angle D)=\frac{1}{2} \times 140^{\circ}=70^{\circ}$
$, \because \overline{\mathrm{AC}} / / \overline{\mathrm{DB}}, \overrightarrow{\mathrm{AD}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{DAC})+\mathrm{m}(\angle \mathrm{D})=180^{\circ}$
(two interior angles in the same side of the transversal)
$\therefore \mathrm{m}(\angle \mathrm{DAC})=180^{\circ}-70^{\circ}=110^{\circ} \quad$ (The req.)

3

$\left\lceil\mathrm{a} \left\lvert\, \because \mathrm{m}(\angle \mathrm{DHB})=\frac{1}{2}[\mathrm{~m}(\overparen{\mathrm{DB}})+\mathrm{m}(\widehat{\mathrm{AC}})]\right.\right.$
$\therefore 110^{\circ}=\frac{1}{2}\left[\mathrm{~m}(\overparen{\mathrm{DB}})+100^{\circ}\right]$
$\therefore 220^{\circ}=\mathrm{m}(\overparen{\mathrm{DB}})+100^{\circ} \therefore \mathrm{m}(\overparen{\mathrm{DB}})=120^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{DCB})=\frac{1}{2} \mathrm{~m}(\overparen{\mathrm{DB}})=\frac{1}{2} \times 120^{\circ}=60^{\circ}$
(The req.)
[b] $\because \mathrm{m}(\angle \mathrm{BCD})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{BMD})$
(inscribed and central angles subtended by $\overparen{B D}$)
$\therefore \mathrm{m}(\angle \mathrm{BCD})=\frac{1}{2} \times 130^{\circ}=65^{\circ}$
$\because \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}, \overleftrightarrow{\mathrm{BC}}$ is a transversal.
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{BCD})=65^{\circ}$
(alternate angles) (1)
, $\because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments
$\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{m}(\angle \mathrm{ACB})=\mathrm{m}(\angle \mathrm{ABC})=65^{\circ}$
From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{ACB})=\mathrm{m}(\angle \mathrm{BCD})=65^{\circ}$
$\therefore \overrightarrow{\mathrm{CB}}$ bisects $\angle \mathrm{ACD}$
(First req.)
In $\triangle \mathrm{ABC}$:
$\mathrm{m}(\angle \mathrm{A})=180^{\circ}-\left(65^{\circ}+65^{\circ}\right)=50^{\circ}$ (Second req.)

4

[a] $\because \mathrm{m}(\angle \mathrm{ACB})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{AMB})$
(inscribed and central angles subtended by $\overparen{A B}$)
$\therefore \mathrm{m}(\angle \mathrm{ACB})=\frac{1}{2} \times 120^{\circ}=60^{\circ}$
,$\because \overrightarrow{\mathrm{CD}} / / \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\widehat{\mathrm{AC}})=\mathrm{m}(\overparen{\mathrm{BC}})$
$\therefore \mathrm{AC}=\mathrm{BC}$
From (1) and (2) :
$\therefore \triangle C A B$ is an equilateral triangle.
(Q.E.D.)
[b] $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$
, $\because \mathrm{Y}$ is the midpoint of $\overline{\mathrm{AC}}$ $\therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
, $\because \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{MX}=\mathrm{MY}$
,$\because M D=M H=r$
By subtracting :
$\therefore \mathrm{XD}=\mathrm{YH}$
(Q.E.D.)

5

$[\mathrm{a}] \because \overline{\mathrm{DH}} / / \overline{\mathrm{BC}} \quad \therefore \mathrm{m}(\overparen{\mathrm{BD}})=\mathrm{m}(\overparen{\mathrm{CH}})$
$\therefore m(\angle \mathrm{BAD})=\mathrm{m}(\angle \mathrm{CAH})$
Adding m ($\angle \mathrm{BAC}$) to both sides
$\therefore \mathrm{m}(\angle \mathrm{DAC})=\mathrm{m}(\angle \mathrm{BAH})$
[b] $\because \overrightarrow{X Y} / / \overrightarrow{\mathrm{BD}}, \overrightarrow{\mathrm{AB}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{YXB})=\mathrm{m}(\angle \mathrm{XBD})$ (alternate angles)
, $\because \mathrm{m}(\angle \mathrm{ACB})$ (inscribed $)=\mathrm{m}(\angle \mathrm{ABD})$
(tangency)
$\therefore \mathrm{m}(\angle \mathrm{YXB})=\mathrm{m}(\angle \mathrm{ACB})$
\therefore AXYC is a cyclic quadrilateral.
(Q.E.D.)

3 Alexandria

1

| 1 b | a c | 3 d | 4 a | 5 b | 5 c |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

2

[a] $\because \overline{\mathrm{DH}} / / \overline{\mathrm{BC}} \quad \therefore \mathrm{m}(\overparen{\mathrm{DB}})=\mathrm{m}(\overparen{\mathrm{CH}})$
$\therefore \mathrm{m}(\angle \mathrm{DAB})=\mathrm{m}(\angle \mathrm{CAH})$
(Q.E.D.)
[b] $\because \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{ADM})=90^{\circ}$
, $\because \mathrm{H}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MH}} \perp \overline{\mathrm{AC}} \quad \therefore \mathrm{m}(\angle \mathrm{AHM})=90^{\circ}$
From the quadrilateral ADMH :

$$
\begin{aligned}
\therefore \mathrm{m}(\angle \mathrm{DMH}) & =360^{\circ}-\left(90^{\circ}+90^{\circ}+60^{\circ}\right) \\
& =120^{\circ} \quad \text { (The req.) }
\end{aligned}
$$

3

$[\mathrm{a}] \because \mathrm{CB}=\mathrm{CD} \quad \therefore \mathrm{m}(\overparen{C B})=\mathrm{m}(\overparen{C D})$
, $\because \overline{\mathrm{AC}}$ is a diameter
$\therefore m(\overparen{A B C})=m(\overparen{A D C})$
Subtracting (1) from (2):
$\therefore \mathrm{m}(\overparen{\mathrm{AB}})=\mathrm{m}(\overparen{\mathrm{AD}})$
[b] $\because m(\widehat{A X})=m(\widehat{A Y})$
$\therefore m(\angle A C X)=m(\angle A B Y)$ and they are drawn on $\overline{\mathrm{HD}}$ and on one side of it
$\therefore \mathrm{BCHD}$ is a cyclic quadrilateral.

(Q.E.D.)

4

[a] The length of $\overparen{\mathrm{AB}}=\frac{108^{\circ}}{360^{\circ}} \times 2 \times 7 \times \frac{22}{7}$

$$
=13.2 \mathrm{~cm}
$$

(The req.)
[b] $\because \mathrm{ABCD}$ is a cyclic quadrilateral.
$\therefore \mathrm{m}(\angle \mathrm{ADC})=\mathrm{m}(\angle \mathrm{ABH})=100^{\circ}$
$\ln \triangle \mathrm{ACD}$:
$\therefore m(\angle \mathrm{ACD})=180^{\circ}-\left(100^{\circ}+40^{\circ}\right)=40^{\circ}$
$\therefore m(\angle C A D)=m(\angle A C D)$
$\therefore C D=A D$
(Q.E.D.)

5

$[\mathrm{a}] \because \overline{\mathrm{XC}}, \overline{\mathrm{XA}}$ are two tangent-segments
$\therefore \mathrm{XC}=\mathrm{XA}=5 \mathrm{~cm}$.
$, \because \overline{Y C}, \overline{Y B}$ are two tangent-segments
$\therefore \mathrm{YC}=\mathrm{YB}=8 \mathrm{~cm}$.
\therefore The perimeter of $\mathrm{AXYB}=5+5+8+8+10$
$=36 \mathrm{~cm} . \quad$ (The req.)
[b] In $\triangle A B C: \because C B=C A$
$\therefore m(\angle B)=m(\angle B A C)$
$, \because \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}, \overline{\mathrm{AC}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{ACD})=\mathrm{m}(\angle \mathrm{BAC})$ (alternate angles)
$\therefore \mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{ACD})$
$\therefore \overrightarrow{\mathrm{CD}}$ is a tangent to the circle circumscribed about $\triangle \mathrm{ABC}$
(Q.E.D.)

4 El-Kalyoubia

$1 \mathrm{~d} \quad 2 \mathrm{a} \quad 3 \mathrm{c} \quad 4 \mathrm{~d} \quad 5 \mathrm{~b} \quad 6 \mathrm{~d}$
(2)
[a] $\because X$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{AXM})=90^{\circ}$
, $\because Y$ is the midpoint of $\overline{A C}$
$\therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{AYM})=90^{\circ}$

From the quadrilateral AXMY :
$\mathrm{m}(\angle \mathrm{DME})=360^{\circ}-\left(90^{\circ}+90^{\circ}+70^{\circ}\right)=110^{\circ}$
(First req.)
, $\because \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{MX}=\mathrm{MY}$
, $\because \mathrm{MD}=\mathrm{ME}=\mathrm{r}$
By subtracting : $\therefore \mathrm{XD}=\mathrm{YE} \quad$ (Second req.)
[b] $\because \mathrm{m}(\overparen{\mathrm{BC}})=\mathrm{m}(\overparen{\mathrm{DE}})$
Adding $\mathrm{m}(\overparen{\mathrm{BD}})$ to both sides
$\therefore \mathrm{m}(\widehat{\mathrm{CD}})=\mathrm{m}(\overparen{\mathrm{EB}}) \quad \therefore \mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{E})$
\therefore In $\triangle A C E: A C=A E$
,$\because m(\overparen{C B})=m(\overparen{E D}) \quad \therefore C B=E D$
$\therefore \mathrm{AB}=\mathrm{AD}$
(Q.E.D.)

3

[a] $\ln \triangle \mathrm{ABD}: \because \mathrm{AB}=\mathrm{AD}$
$\therefore \mathrm{m}(\angle \mathrm{ABD})=\mathrm{m}(\angle \mathrm{ADB})=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-\left(30^{\circ}+30^{\circ}\right)=120^{\circ}$
,$\because m(\angle A)+m(\angle C)=120^{\circ}+60^{\circ}=180^{\circ}$
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral.
(Q.E.D.)
[b] $\because \overline{\mathrm{AD}}, \overline{\mathrm{AF}}$ are two tangent-segments to the circle
$\therefore \mathrm{AD}=\mathrm{AF}=3 \mathrm{~cm}$.
$, \because \overline{\mathrm{BD}}, \overline{\mathrm{BE}}$ are two tangent-segments to the circle
$\therefore \mathrm{BD}=\mathrm{BE}=4 \mathrm{~cm}$.
$, \because \overline{\mathrm{CE}}, \overline{\mathrm{CF}}$ are two tangent-segments to the circle
$\therefore \mathrm{CE}=\mathrm{CF}=2 \mathrm{~cm}$.
\therefore The perimeter of $\triangle \mathrm{ABC}=3+3+4+4+2+2$
$=18 \mathrm{~cm}$. (The req.)
2
[a] $\because \overrightarrow{\mathrm{AD}}$ is a tangent to the circle
$\therefore \mathrm{m}(\angle \mathrm{DAC})$ (tangency)
$=m(\angle B)$ (inscribed)

, $\because \overline{\mathrm{XY}} / / \overline{\mathrm{BC}}, \overline{\mathrm{AB}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{AXY})=\mathrm{m}(\angle \mathrm{B})$
(corresponding angles)
From (1) and (2) : $\therefore m(\angle A X Y)=m(\angle D A C)$
$\therefore \overrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the points A, X and Y
(Q.E.D.)
[b] $\because \mathrm{m}(\angle \mathrm{AEC})=\frac{1}{2}[\mathrm{~m}(\overparen{\mathrm{AC}})+\mathrm{m}(\overparen{\mathrm{BD}})]$
$\therefore \mathrm{m}(\angle \mathrm{AEC})=\frac{1}{2}\left(50^{\circ}+80^{\circ}\right)=65^{\circ}$ (The req.)

(5)

[a] $\because \overline{\mathrm{DE}} / / \overline{\mathrm{BC}}$
$\therefore \mathrm{m}(\overparen{\mathrm{DB}})=\mathrm{m}(\overparen{\mathrm{EC}})$ adding $\mathrm{m}(\overparen{\mathrm{BC}})$ to both sides
$\therefore \mathrm{m}(\widehat{\mathrm{DC}})=\mathrm{m}(\widehat{\mathrm{EB}})$
$\therefore \mathrm{m}(\angle \mathrm{DAC})=\mathrm{m}(\angle \mathrm{BAE})$
(Q.E.D.)
[b] $\because m(\angle B)=\frac{1}{2} m(\angle A M C)=60^{\circ}$
(inscribed and central angle subtended by $\overparen{A C}$)
,$\because \overrightarrow{\mathrm{CD}} / / \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\widehat{\mathrm{AC}})=\mathrm{m}(\overrightarrow{\mathrm{CB}})$
$\therefore \mathrm{AC}=\mathrm{CB}$
From (1) and (2) :
$\therefore \Delta \mathrm{CAB}$ is an equilateral triangle. (Q.E.D.)

5 El-Sharkia

1 a $2 \mathrm{~d} 3 \mathrm{~b} 4 \mathrm{c} 5 \mathrm{~d} \quad 6 \mathrm{~b}$

2
[a] $\because m(\angle A)=\frac{1}{2} m(\angle B M C)$
(inscribed and central angles subtended by $\overparen{B C}$)
$\therefore \mathrm{m}(\angle \mathrm{A})=65^{\circ}$
(First req.)
,$\because \mathrm{ABDC}$ is a cyclie quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{D})=180^{\circ}-65^{\circ}=115^{\circ} \quad$ (Second req.)
[b] $\because \overline{\mathrm{CD}}$ is a diameter
$\therefore \mathrm{m}(\angle \mathrm{CBD})=90^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=135^{\circ}-90^{\circ}=45^{\circ}$
,$\because \mathrm{m}(\angle \mathrm{D})$ (inscribed) $=\mathrm{m}(\angle \mathrm{ABC})$ (tangency)

$$
=45^{\circ}
$$

$\therefore \mathrm{m}(\angle \mathrm{D})+\mathrm{m}(\angle \mathrm{ABD})=45^{\circ}+135^{\circ}=180^{\circ}$
and they are interior angles in the same side of the transversal
$\therefore \overline{\mathrm{DC}} / / \overrightarrow{\mathrm{BA}}$
(Q.E.D.)

3

[a] $\because \overrightarrow{\mathrm{AB}}$ is a tangent
$\therefore \overline{\mathrm{MB}} \perp \overrightarrow{\mathrm{AB}}$
$\therefore \mathrm{m}(\angle \mathrm{ABM})=90^{\circ}$
,$\because \overrightarrow{\mathrm{AC}}$ is a tangent
$\therefore \overline{\mathrm{MC}} \perp \overrightarrow{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{ACM})=90^{\circ}$
,$\because \mathrm{m}(\angle \mathrm{ABM})+\mathrm{m}(\angle \mathrm{ACM})=90^{\circ}+90^{\circ}=180^{\circ}$
$\therefore \mathrm{ABMC}$ is a cyclic quadrilateral. (Q.E.D. 1)
$\therefore \mathrm{m}(\angle \mathrm{CMD})=\mathrm{m}(\angle \mathrm{A})=45^{\circ}$
,$\because m(\angle M C D)=90^{\circ}$
In $\triangle \mathrm{CMD}: \therefore \mathrm{m}(\angle \mathrm{D})=180^{\circ}-\left(90^{\circ}+45^{\circ}\right)=45^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CMD})=\mathrm{m}(\angle \mathrm{D})$
$\therefore \mathrm{CD}=\mathrm{CM}$
(Q.E.D. 2)
[b] $\because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments to the smaller circle
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}$
, $\because \mathrm{MD}=\mathrm{ME}=\mathrm{r}$
(radii lengths of the smaller circle)
$\therefore \mathrm{AB}=\mathrm{AC}$
(Q.E.D.)

4

[a] $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{NX}} \perp \overline{\mathrm{AC}} \quad \therefore \mathrm{m}(\angle \mathrm{NXA})=90^{\circ}$
,$\because \overline{\mathrm{AB}}$ is the common chord
, $\widehat{\mathrm{NM}}$ is the line of centres
$\therefore \overline{\mathrm{NM}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{NYA})=90^{\circ}$
From the quadrilateral AXNY :
$\therefore \mathrm{m}(\angle \mathrm{BAC})=360^{\circ}-\left(90^{\circ}+90^{\circ}+80^{\circ}\right)=100^{\circ}$
(The req.)
[b] $\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{C})=180^{\circ}-120^{\circ}=60^{\circ}$
$, \because \overrightarrow{\mathrm{BE}} / / \overrightarrow{\mathrm{CD}}, \overrightarrow{\mathrm{BC}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{EBC})=\mathrm{m}(\angle \mathrm{C})=60^{\circ}$ (alternate angles)
$\therefore \mathrm{m}(\angle \mathrm{CBF})=60^{\circ}+45^{\circ}=105^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CDA})=\mathrm{m}(\angle \mathrm{CBF})=105^{\circ} \quad$ (The req.)

5

[a] $\because \mathrm{m}(\widehat{\mathrm{BD}})=2 \mathrm{~m}(\angle \mathrm{BED})=20^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})=\frac{1}{2}[\mathrm{~m}(\overparen{\mathrm{CE}})-\mathrm{m}(\overparen{\mathrm{BD}})]$ $=\frac{1}{2}\left(80^{\circ}-20^{\circ}\right)=30^{\circ} \quad$ (The req)
[b] $\because \ln \triangle \mathrm{ABC}: \mathrm{m}(\angle \mathrm{C})=180^{\circ}-\left(90^{\circ}+30^{\circ}\right)=60^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{DAB})=60^{\circ}$
$\therefore \overrightarrow{\mathrm{AD}}$ is a tangent to the circle
passing through the points A, B and C (Q.E.D.)

6 EX-Monofia

11
$1 \mathrm{~b} \quad 2 \mathrm{a}$ (3) 4 c (5a 6)

12
[a] $\because \overline{\mathrm{AB}}$ is a diameter $\quad \therefore \mathrm{m}(\overparen{\mathrm{AB}})=180^{\circ}$
, $\because \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}$
$\therefore \mathrm{m}(\overparen{\mathrm{AC}})=\mathrm{m}(\overparen{\mathrm{BD}})=\frac{180^{\circ}-100}{2}=40^{\circ}$ (First req.)
$\therefore \mathrm{m}(\angle \mathrm{AEC})=\frac{1}{2} \mathrm{~m}(\overparen{\mathrm{AC}})=20^{\circ}$
$\therefore 2 x-10^{\circ}=20^{\circ} \quad \therefore 2 x=30^{\circ}$
$\therefore x=15^{\circ}$
(Second req.)
[b] $\ln \triangle \mathrm{ABC}$:
$\because m(\angle B)=m(\angle C)$
,$\because X$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \mathrm{AB}=\mathrm{AC}$
, $\because \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}, \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{MX}=\mathrm{MY}$
(Q.E.D.)

3

[a] $\because \mathrm{m}(\angle \mathrm{ADC})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{AMC})$
(inscribed and central angles subtended by $\overparen{\mathrm{AC}}$)
$\therefore \mathrm{m}(\angle \mathrm{ADC})=\frac{1}{2} \times 70=35^{\circ}$
(First req.)
$, \because \overline{\mathrm{CD}} / / \overline{\mathrm{AB}}, \overline{\mathrm{AD}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{BAD})=\mathrm{m}(\angle \mathrm{ADC})=35^{\circ}$ (altemate angles)
,$\because \overline{\mathrm{AB}}$ is a diameter
$\therefore \mathrm{m}(\angle \mathrm{ADB})=90^{\circ}$
In $\triangle \mathrm{ABD}: \therefore \mathrm{m}(\angle \mathrm{ABD})=180^{\circ}-\left(90^{\circ}+35^{\circ}\right)$

$$
\left.=55^{\circ} \quad \text { (Second req } .\right)
$$

[b] $\because \overline{\mathrm{DE}} / / \overline{\mathrm{BC}}, \overline{\mathrm{AC}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{AED})=\mathrm{m}(\angle \mathrm{C})$ (corresponding angles)
, $\because \mathrm{m}(\angle \mathrm{C})$ (inscribed) $=\mathrm{m}(\angle \mathrm{BAX})$ (tangency)
$\therefore \mathrm{m}(\angle \mathrm{AED})=\mathrm{m}(\angle \mathrm{DAX})$
$\therefore \overrightarrow{\mathrm{AX}}$ is a tangent to the circle passing through the points A, D and E
(Q.E.D.)

4

[a] $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{CF}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{CF}}$
$\therefore \mathrm{m}(\angle \mathrm{MXE})=90^{\circ}$
,$\because \overline{\mathrm{AB}}$ is the common chord
, $\overrightarrow{\mathrm{MN}}$ is the line of centres
$\therefore \overline{\mathrm{MN}} \perp \overline{\mathrm{AB}}$
$\therefore \mathrm{m}(\angle \mathrm{MDE})=90^{\circ}$
From the quadrilateral XMDE :
$\therefore \mathrm{m}(\angle \mathrm{XMD})=360^{\circ}-\left(90^{\circ}+90^{\circ}+52^{\circ}\right)=128^{\circ}$
(The req.)
[b] In $\triangle B C D: \because B C=D C$
$\therefore \mathrm{m}(\angle \mathrm{BDC})=\mathrm{m}(\angle \mathrm{CBD})=35^{\circ}$
$\therefore m(\angle C)=180^{\circ}-\left(35^{\circ}+35^{\circ}\right)=110^{\circ}$
,$\because m(\angle A)+m(\angle C)=70^{\circ}+110^{\circ}=180^{\circ}$
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral.
(Q.E.D.)

5

[a] $\because \overline{\mathrm{BD}}, \overline{\mathrm{BE}}$ are two tangent-segments
$\therefore \mathrm{BD}=\mathrm{BE}=6 \mathrm{~cm}$.
$\therefore C E=10-6=4 \mathrm{~cm}$. The req.)
[b] $\operatorname{In} \triangle \mathrm{ABE}$:
$\because A B=A E \quad \therefore m(\angle A E B)=m(\angle B)$
, $\because m(\angle D)=m(\angle B)$ (properties of parallelogram)
$\therefore \mathrm{m}(\angle \mathrm{AEB})=\mathrm{m}(\angle \mathrm{D})$
$\therefore \mathrm{AECD}$ is a cyclic quadrilateral. (Q.E.D.)

7 El-Gharbia

1
$1 \mathrm{~b} \quad 2 \mathrm{~d} \quad 3 \mathrm{c} \quad 4 \mathrm{~b} \quad 5 \mathrm{c} \quad 6 \mathrm{c}$
2
[a] $\because \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}}$

$$
\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{~m}(\angle \mathrm{ADM})=90^{\circ}
$$

, $\because E$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{AEM})=90^{\circ}$
From the quadrilateral MDAE :
$\therefore m(\angle D M E)=360^{\circ}-\left(90^{\circ}+90^{\circ}+120^{\circ}\right)=60^{\circ}$
, $\because m(\angle \mathrm{YMX})=m(\angle \mathrm{DME})=60^{\circ} \quad$ (V.O.A)
, $M Y=M X=r$
$\therefore \triangle \mathrm{XMY}$ is an equilateral triangie. (Q.E.D.)
[b] $\ln \triangle \mathrm{AMD}:$
$\because M A=M D=r$
$\therefore \mathrm{m}(\angle \mathrm{MAD})=\mathrm{m}(\angle \mathrm{MDA})$
,$\because \overrightarrow{\mathrm{DA}}$ bisects $\angle \mathrm{BDM}$
$\therefore \mathrm{m}(\angle \mathrm{MDA})=\mathrm{m}(\angle \mathrm{ADB})$
From (1), (2) : $\therefore m(\angle \mathrm{MAD})=m(\angle \mathrm{ADB})$
and they are alternate angles
$\therefore \overline{\mathrm{AM}} / / \overline{\mathrm{BD}}$
,$\because \overline{\mathrm{BD}} \perp \overrightarrow{\mathrm{AB}} \quad \therefore \overline{\mathrm{MA}} \perp \overrightarrow{\mathrm{AB}}$
$\therefore \overrightarrow{\mathrm{AB}}$ is a tangent to the circle M at A (Q.E.D.)

3
[a] $\because m(\angle B C D)=\frac{1}{2} m(\angle B M D)$
(inscribed and central angles subtended by $\overparen{B D}$)
$\therefore \mathrm{m}(\angle \mathrm{BCD})=\frac{1}{2} \times 50^{\circ}=25^{\circ}$
,$\because \overline{\mathrm{AB}}$ is a diameter $\therefore \mathrm{m}(\angle \mathrm{ACB})=90^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ACD})=25^{\circ}+90^{\circ}=115^{\circ} \quad$ (The req.)
[b] $\because \overline{\mathrm{DE}} / / \overline{\mathrm{BC}} \quad \therefore \mathrm{m}(\overparen{\mathrm{BD}})=\mathrm{m}(\overparen{\mathrm{CE}})$
$\therefore \mathrm{m}(\angle \mathrm{BAD})=\mathrm{m}(\angle \mathrm{CAE})$
Adding $m(\angle B A C)$ to both sides
$\therefore \mathrm{m}(\angle \mathrm{DAC})=\mathrm{m}(\angle \mathrm{BAE})$
(Q.E.D.)

4

[a] $\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{BAD})=180^{\circ}-70^{\circ}=110^{\circ}$
,\because ABFE is a cyclic quadrilateral and $\angle B A D$ is exterior of it.
$\therefore \mathrm{m}(\angle \mathrm{EFB})=\mathrm{m}(\angle \mathrm{BAD})=110^{\circ} \quad$ (First req.)
$\therefore \mathrm{m}(\angle \mathrm{EFB})+\mathrm{m}(\angle \mathrm{BCD})=110^{\circ}+70^{\circ}=180^{\circ}$
and they are interior angles in the same side of $\stackrel{\rightharpoonup}{\mathrm{FC}}$
$\therefore \overline{\mathrm{CD}} / / \overline{\mathrm{EF}}$
(Second req.)
[b] $\because \overrightarrow{\mathrm{XA}}, \overrightarrow{\mathrm{XB}}$ are two tangents to the circle
$\therefore \mathrm{XA}=\mathrm{XB}$
\therefore In $\triangle A B X$:
$\mathrm{m}(\angle \mathrm{XAB})=\mathrm{m}(\angle \mathrm{XBA})=\frac{180^{\circ}-70^{\circ}}{2}=55^{\circ}$
,$\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{BAD})=180^{\circ}-125^{\circ}=55^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{XAB})=\mathrm{m}(\angle \mathrm{BAD})$
$\therefore \overrightarrow{\mathrm{AB}}$ bisects $\angle \mathrm{DAX}$
(Q.E.D.)

5

[a] $\because \overline{\mathrm{AB}}$ is the common chord
, $\overrightarrow{\mathrm{MN}}$ is the line of centres $\quad \therefore \overrightarrow{\mathrm{MN}} \perp \overrightarrow{\mathrm{AB}}$
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$
$, \because \overrightarrow{\mathrm{MX}} \perp \overline{\mathrm{AC}}, \mathrm{AC}=\mathrm{AB} \quad \therefore \mathrm{MX}=\mathrm{MD}$
, \because MY $=$ ME (lengths of two radii)
Subtracting (1) from (2) : $\therefore \mathrm{XY}=\mathrm{DE} \quad$ (Q.E.D.)
[b] $\because \overline{\mathrm{XY}} / / \overleftrightarrow{\mathrm{BD}}, \stackrel{\rightharpoonup}{\mathrm{AB}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{DBX})=\mathrm{m}(\angle \mathrm{YXB})$ (alternate angles) (1)
, $\because \mathrm{m}(\angle \mathrm{C})$ (inscribed)

$$
\begin{equation*}
=\mathrm{m}(\angle \mathrm{ABD}) \text { (tangency) } \tag{2}
\end{equation*}
$$

From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{YXB})$
\therefore AXYC is a cyclic quadrilateral.
(Q.E.D.)

8 EJ-Dakahilia

1
[a] 1 a
(2) c
(3) b
[b] $\because \mathrm{m}(\angle \mathrm{A})=\frac{1}{2}[\mathrm{~m}(\overparen{\mathrm{CE}})-\mathrm{m}(\overparen{\mathrm{BD}})]$
$\therefore 20^{\circ}=\frac{1}{2}\left[80^{\circ}-\mathrm{m}(\overparen{\mathrm{BD}})\right]$
$\therefore 40^{\circ}=80^{\circ}-\mathrm{m}(\widehat{\mathrm{BD}})$
$\therefore \mathrm{m}(\overparen{\mathrm{BD}})=80^{\circ}-40^{\circ}=40^{\circ}$
,$\because \overline{\mathrm{BC}}$ is a diameter
$\therefore \mathrm{m}(\overparen{\mathrm{BC}})=180^{\circ}$
$\therefore \mathrm{m}(\widetilde{\mathrm{DE}})=180^{\circ}-\left(80^{\circ}+40^{\circ}\right)=60^{\circ}$ (The req.)

2

$\begin{array}{lll} \\ {[\mathrm{a}]} & 1 \mathrm{~b} & 2 \mathrm{c} \\ 3 \mathrm{~d}\end{array}$
[b] $\because m(\angle B C D)=\frac{1}{2} m(\angle B M D)$
(inscribed and central angles subtended by $\overparen{\mathrm{BD}}$)
$\therefore \mathrm{m}(\angle \mathrm{BCD})=\frac{1}{2} \times 30^{\circ}=15^{\circ} \quad$ (First req.)
, $\because \overline{\mathrm{AB}}$ is a diameter
$\therefore \mathrm{m}(\angle \mathrm{ACB})=90^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ACD})=90^{\circ}+15^{\circ}=105^{\circ}$ (Second req.)

3

[a] $\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{D})=\mathrm{m}(\angle \mathrm{ABE})=100^{\circ}$
,$\because \mathrm{D}$ is the midpoint of $\overparen{\mathrm{AC}}$
$\therefore \mathrm{m}(\widehat{\mathrm{AD}})=\mathrm{m}(\widehat{\mathrm{CD}}) \quad \therefore \mathrm{AD}=\mathrm{CD}$
In $\triangle \mathrm{ACD}$:
$\therefore \mathrm{m}(\angle \mathrm{DAC})=\mathrm{m}(\angle \mathrm{DCA})=\frac{180^{\circ}-100^{\circ}}{2}=40^{\circ}$
(The req.)
[b] $\because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments
$\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore 2 x-1=x+2$
$\therefore 2 x-x=2+1 \quad \therefore x=3 \quad$ (First req.)
$\therefore \mathrm{AB}=\mathrm{AC}=2 \times 3-1=5 \mathrm{~cm}$.
, $\mathrm{BC}=7-3=4 \mathrm{~cm}$.
\therefore The perimeter of $\triangle \mathrm{ABC}=5+5+4=14 \mathrm{~cm}$.
(Second req.)

4

[a] $\ln \triangle E B C: \because B E=B C$
$\therefore \mathrm{m}(\angle \mathrm{BEC})=\mathrm{m}(\angle \mathrm{C})$
, $\because \mathrm{m}(\angle \mathrm{BAD})=\mathrm{m}(\angle \mathrm{C})$
(properties of parallelogram)
$\therefore m(\angle B E D)=m(\angle B A D)$
and they are drawn on $\overline{\mathrm{BD}}$ and on one side of it
$\therefore \mathrm{ABDE}$ is a cyclic quadrilateral. (Q.E.D. 1)
$\therefore \mathrm{m}(\angle \mathrm{AEB})=\mathrm{m}(\angle \mathrm{ADB})$
(drawn on $\overline{\mathrm{AB}}$ and on one side of it)
, $\because \overline{\mathrm{AD}} / / \overline{\mathrm{BC}}, \overline{\mathrm{BD}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{DBC})=\mathrm{m}(\angle \mathrm{ADB})$ (alternate angles)
$\therefore \mathrm{m}(\angle \mathrm{AEB})=\mathrm{m}(\angle \mathrm{DBC})$
(Q.E.D. 2)
[b] $\because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments to the smaller circle
$\begin{array}{ll}\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}} & \therefore \mathrm{m}(\angle \mathrm{MDA})=90^{\circ} \\ , \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}} & \therefore \mathrm{m}(\angle \mathrm{MEA})=90^{\circ}\end{array}$
From the quadrilateral ADME :
$\therefore \mathrm{m}(\angle \mathrm{EMD})=360^{\circ}-\left(90^{\circ}+90^{\circ}+50^{\circ}\right)=130^{\circ}$
(First req.)
, $\because \mathrm{MD}=\mathrm{ME}$ (two radii in the smaller circle)
$\therefore \mathrm{AB}=\mathrm{AC}$
(Second req.)

5

[a] $\ln \triangle \mathrm{AMC}: \because \mathrm{AM}=\mathrm{MC}=\mathrm{r}$
$\therefore \mathrm{m}(\angle \mathrm{MAC})=\mathrm{m}(\angle \mathrm{ACM})$
$\because m(\angle B A C)=m(\angle M A C)$
$\therefore m(\angle \mathrm{BAC})=m(\angle \mathrm{ACM})$ and they are alternate angles.
$\therefore \overline{\mathrm{AB}} / / \overline{\mathrm{CM}}$
$\because \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$
,$\because \overline{\mathrm{AB}} / / \overline{\mathrm{CM}}$
$\therefore \overline{\mathrm{DM}} \perp \overline{\mathrm{CM}}$
(Q.E.D.)
[b] \because The figure ABCD is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{ABC})=180^{\circ}-125^{\circ}=55^{\circ}$
$\because \overrightarrow{\mathrm{EA}}, \overrightarrow{\mathrm{EB}}$ are two tangents to the circle at A and B
$\therefore \mathrm{EA}=\mathrm{EB} \quad \because \mathrm{m}(\angle \mathrm{E})=70^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{EAB})=\frac{180^{\circ}-70^{\circ}}{2}=55^{\circ}$
$\because \overrightarrow{\mathrm{EA}}$ is a tangent to the circle at A
$\therefore m(\angle E A B)$ (tangency) $=m(\angle A C B)$ (inscribed)
$\therefore \mathrm{m}(\angle \mathrm{ACB})=55^{\circ}$
From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{ACB})=\mathrm{m}(\angle \mathrm{ABC})=55^{\circ}$
$\therefore \mathrm{AB}=\mathrm{AC}$
(Q.E.D. 1)
$\therefore m(\angle B A C)=180^{\circ}-2 \times 55^{\circ}=70^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle \mathrm{E})=70^{\circ}$
$\therefore \overrightarrow{\mathrm{AC}}$ is a tangent to the circle passing through the vertices of $\triangle \mathrm{ABE}$
(Q.E.D. 2)

9 Ismailia

1
$1 \mathrm{c} \quad 2 \mathrm{~b} \quad 3 \mathrm{~d} \quad 4 \mathrm{a} \quad 5 \mathrm{~d} \quad 6 \mathrm{c}$

2
[a] $\because \mathrm{m}(\angle \mathrm{A})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{BMD})=\frac{1}{2} \times 150^{\circ}=75^{\circ}$ (inscribed and central angles subtended by $\overparen{B D}$) , $\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{C})=180^{\circ}-75^{\circ}=105^{\circ} \quad$ (The req.)
[b] In $\triangle A B D: \because A B=A D$
$\therefore \mathrm{m}(\angle \mathrm{ABD})=\mathrm{m}(\angle \mathrm{ADB})=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-\left(30^{\circ}+30^{\circ}\right)=120^{\circ}$
,$\because m(\angle A)+m(\angle C)=120^{\circ}+60^{\circ}=180^{\circ}$
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral.
(Q.E.D.)

3

[a] $\because m(\angle B D C)=m(\angle B A C)$
(two inscribed angles subtended by $\overparen{B C}$)
$\therefore \mathrm{m}(\angle \mathrm{BDC})=30^{\circ}$
(First req.)
$\because \mathrm{m}(\overparen{B C})=2 \mathrm{~m}(\angle \mathrm{BAC})=60^{\circ}$
, $\because \overline{\mathrm{AB}}$ is diameter in the circle M
$\therefore m(\widehat{A B})=180^{\circ}$
$\therefore m(\overparen{A C})=180^{\circ}-60^{\circ}=120^{\circ}$
, $\because \mathrm{D}$ is the midpoint of $\overparen{\mathrm{AC}}$
$\therefore m(\widehat{\mathrm{AD}})=\frac{120^{\circ}}{2}=60^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ACD})=\frac{1}{2} \mathrm{~m}(\overparen{\mathrm{AD}})=\frac{1}{2} \times 60^{\circ}=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle \mathrm{ACD})$ but they are alternate angles
$\therefore \overline{\mathrm{DC}} / / \overline{\mathrm{AB}}$
(Second req.)
[b] $\because \overrightarrow{\mathrm{AD}}$ is a tangent to the circle
$\therefore \overrightarrow{\mathrm{MD}} \perp \overrightarrow{\mathrm{AD}} \quad \therefore \mathrm{m}(\angle \mathrm{ADM})=90^{\circ}$
, $\because E$ is the midpoint of $\overline{\mathrm{BC}}$
$\therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{BC}} \quad \therefore \mathrm{m}(\angle \mathrm{MEA})=90^{\circ}$
\therefore From the quadrilateral ADME :
$\mathrm{m}(\angle \mathrm{DME})=360^{\circ}-\left(90^{\circ}+90^{\circ}+65^{\circ}\right)=115^{\circ}$
(The req.)

54

[a] $\because \overline{\mathrm{AX}}, \overline{\mathrm{AZ}}$ are two tangent-segments
$\therefore A X=A Z=6 \mathrm{~cm}$.
$\therefore C Z=10-6=4 \mathrm{~cm}$.
, $\because \overline{\mathrm{CZ}}, \overline{\mathrm{CY}}$ are two tangent-segments
$\therefore C Z=C Y=4 \mathrm{~cm}$.
$, \because \overline{\mathrm{BX}}, \overline{\mathrm{BY}}$ are two tangent-segments
$\therefore B X=B Y$
\because The perimeter of $\triangle A B C=24 \mathrm{~cm}$.
$B X+B Y+6+10+4=24$
$\therefore B X+B Y=4 \quad \therefore B X=2 \mathrm{~cm}$.
$\therefore A B=6+2=8 \mathrm{~cm}$.
(The req.)
[b] $\because m(\angle C)=\frac{1}{2} m(\angle B M D)=\frac{1}{2} \times 80^{\circ}=40^{\circ}$
(inscribed and central angles subtended by $\overparen{B D}$)
, $\because \angle \mathrm{ABC}$ is an exterior angle of $\triangle \mathrm{BCD}$
$\therefore \mathrm{m}(\angle \mathrm{CDB})=110^{\circ}-40^{\circ}=70^{\circ} \quad$ (First req.)
,$\because \mathrm{m}(\angle \mathrm{CBD})=180^{\circ}-110^{\circ}=70^{\circ}$
$\because \mathrm{m}(\angle \mathrm{CDB})=\mathrm{m}(\angle \mathrm{CBD})=70^{\circ}$
$\therefore \operatorname{In} \triangle C B D: C B=C D$
(Second req.)

5

[a] $\because \mathrm{m}(\angle \mathrm{A})=\frac{1}{2}[\mathrm{~m}(\overparen{\mathrm{EC}})-\mathrm{m}(\widehat{\mathrm{BD}})]$
$\therefore 40^{\circ}=\frac{1}{2}\left[\mathrm{~m}(\overparen{\mathrm{EC}})-60^{\circ}\right]$
$\therefore 80^{\circ}=\mathrm{m}(\widehat{\mathrm{EC}})-60^{\circ}$
$\therefore \mathrm{m}(\widehat{\mathrm{EC}})=80^{\circ}+60^{\circ}=140^{\circ}$
(First req.)
,$\because \mathrm{m}(\widehat{\mathrm{BC}})=\mathrm{m}(\widehat{\mathrm{ED}})$
$\therefore \mathrm{m}(\overparen{\mathrm{BC}})=\mathrm{m}(\overparen{\mathrm{ED}})=\frac{360^{\circ}-\left(140^{\circ}+60^{\circ}\right)}{2}=80^{\circ}$
(Second req.)
[b] $\because \overline{\mathrm{XY}} / / \overrightarrow{\mathrm{BD}}, \overrightarrow{\mathrm{AB}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{DBX})=\mathrm{m}(\angle \mathrm{YXB})$ (alternate angles)
, $\because \mathrm{m}(\angle \mathrm{C})$ (inscribed)
$=\mathrm{m}(\angle \mathrm{ABD})$ (tangency)
From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{YXB})$
\therefore AXYC is a cyclic quadrilateral.
(Q.E.D.)

10 Suez

2

[a] $\mathrm{m}(\angle \mathrm{ABD})$ (tangency $)=\frac{1}{2} \mathrm{~m}(\angle \mathrm{AMB})($ central $)$

$$
=\frac{\overline{1}}{2} \times 80^{\circ}=40^{\circ} \text { (First req.) }
$$

$\mathrm{m}(\overparen{\mathrm{AB}})=\mathrm{m}(\angle \mathrm{AMB})=80^{\circ} \quad$ (Second req.)
[b] \because E is the midpoint of $\overline{\mathrm{AD}}$
$\therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{AD}} \quad \therefore \mathrm{m}(\angle \mathrm{MEC})=90^{\circ}$
,$\because \overline{\mathrm{BC}}$ is a tangent-segment
$\therefore \overline{\mathrm{MB}} \perp \overline{\mathrm{BC}} \quad \therefore \mathrm{m}(\angle \mathrm{MBC})=90^{\circ}$
From the quadrilateral MBCE :
$\therefore \mathrm{m}(\angle \mathrm{EMB})=360^{\circ}-\left(90^{\circ}+90^{\circ}+50^{\circ}\right)=130^{\circ}$
(The req.)

3

[a] $\because m(\overparen{A B})=m(\overparen{B C})=m(\overparen{A C})$
$\therefore \mathrm{m}(\overparen{\mathrm{AB}})=\frac{360^{\circ}}{3}=120^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{C})=\frac{1}{2} \mathrm{~m}(\overparen{\mathrm{AB}})=\frac{1}{2} \times 120^{\circ}$
$=60^{\circ} \quad$ (The req.)
[b] \because E is the midpoint of $\overline{\mathrm{AC}} \quad \therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}$
$, \because \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}, \mathrm{MD}=\mathrm{ME}$
$\therefore \mathrm{AB}=\mathrm{AC}$
(Q.E.D.)

4
[a] $\mathrm{m}(\angle \mathrm{BDC})$ (inscribed $)=\mathrm{m}(\angle \mathrm{ABC})($ tangency $)$

$$
=70^{\circ}
$$

(First req.)
$\because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents
$\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=70^{\circ}$
\therefore In $\triangle \mathrm{ABC}$:
$m(\angle \mathrm{BAC})=180^{\circ}-\left(70^{\circ}+70^{\circ}\right)=40^{\circ}$
(Second req.)
[b] $\because \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}$
$\therefore \mathrm{m}(\overparen{\mathrm{BD}})=\mathrm{m}(\overparen{\mathrm{AC}})=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BED})=\frac{1}{2} \mathrm{~m}(\overparen{B D})=\frac{1}{2} \times 30^{\circ}=15^{\circ}$
(The req.)

5

[a] State by yourself.
[b] In $\triangle \mathrm{ABC}$:
$\because m(\angle B)=180^{\circ}-\left(30^{\circ}+50^{\circ}\right)=100^{\circ}$
, $\because m(\angle B)+m(\angle D)=100^{\circ}+80^{\circ}=180^{\circ}$
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral.
(Q.E.D.)

11 Port Said

11

1 c	2 a	3 d	4 b	5 c	6
a					

2.

[a] $\because \overline{\mathrm{XY}}$ is a tangent-segment
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{XY}} \quad \therefore \mathrm{m}(\angle \mathrm{MXY})=90^{\circ}$
$\therefore(M Y)^{2}=(X Y)^{2}+(M X)^{2}=12^{2}+5^{2}=169$
$\therefore M Y=\sqrt{169}=13 \mathrm{~cm}$.
$\because M X=M Z=r \quad \therefore M Z=5 \mathrm{~cm}$.
$\therefore Y Z=13-5=8 \mathrm{~cm}$.
(The req.)
[b] $\because \overline{\mathrm{MO}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MH}} \perp \overline{\mathrm{AC}}, \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{MO}=\mathrm{MH}$
, $\because M X=M Y=r$
$\therefore \mathrm{OX}=\mathrm{HY}$
(Q.E.D.)

3

[a] Mention by yourself.
[b] $\because \overline{\mathrm{BD}}$ is a tangent
$\therefore \overline{\mathrm{MB}} \perp \overline{\mathrm{BD}} \quad \therefore \mathrm{m}(\angle \mathrm{MBD})=90^{\circ}$
, $\because \mathrm{H}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MH}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{MHD})=90^{\circ}$
,$\because m(\angle \mathrm{MBD})+\mathrm{m}(\angle \mathrm{MHD})=90^{\circ}+90^{\circ}=180^{\circ}$
\therefore DBMH is a cyclic quadrilateral.
(Q.E.D.)

4

[a] $\because \overrightarrow{\mathrm{AB}}$ is a tangent
$\therefore \overrightarrow{\mathrm{MB}} \perp \overrightarrow{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{ABM})=90^{\circ}$
In $\triangle \mathrm{AMB}: \therefore \mathrm{m}(\angle \mathrm{BMA})=180^{\circ}-\left(90^{\circ}+40^{\circ}\right)$

$$
=50^{\circ}
$$

$\therefore \mathrm{m}(\angle \mathrm{BDC})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{BMC})=\frac{1}{2} \times 50^{\circ}=25^{\circ}$
(inscribed and central angles subtended by $\overparen{B C}$)
(The req.)
[b] $\because \overline{\mathrm{XY}} / / \overline{\mathrm{BC}} \quad \therefore \mathrm{m}(\overparen{\mathrm{XB}})=\mathrm{m}(\widetilde{\mathrm{YC}})$
$\therefore \mathrm{m}(\angle \mathrm{XAB})=\mathrm{m}(\angle \mathrm{YAC})$
Adding $\mathrm{m}(\angle \mathrm{BAC})$ to bath sides
$\therefore \mathrm{m}(\angle \mathrm{XAC})=\mathrm{m}(\angle \mathrm{YAB})$
(Q.E.D.)

5

[a] $\because \overline{\mathrm{AD}}, \overline{\mathrm{AQ}}$ are two tangent-segments to the circle $\therefore \mathrm{AD}=\mathrm{AQ}=5 \mathrm{~cm}$.
$, \because \overline{\mathrm{BD}}, \overline{\mathrm{BH}}$ are two tangent-segments to the circle
$\therefore \mathrm{BD}=\mathrm{BH}=4 \mathrm{~cm}$.
$, \because \overline{\mathrm{CH}}, \overline{\mathrm{CQ}}$ are two tangent-segments to the circle
$\therefore \mathrm{CH}=\mathrm{CQ}=3 \mathrm{~cm}$.
\therefore The perimeter of $\triangle \mathrm{ABC}=5+5+4+4+3+3$

$$
=24 \mathrm{~cm} . \quad \text { (The rey. }
$$

[b] $\because \overrightarrow{\mathrm{AD}}$ is a tangent to the circle
$\therefore \mathrm{m}(\angle \mathrm{DAB})$ (tangency)
$=m(\angle A C B)$ (inscribed)
$, \because \overline{\mathrm{XY}} / / \overline{\mathrm{BC}}, \overline{\mathrm{YC}}$ is a transversal
$\therefore m(\angle A Y X)=m(\angle A C B)$ (corresponding angles)
From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{DAB})=\mathrm{m}(\angle \mathrm{AYX})$
$\therefore \overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the points A, X and Y
(Q.E.D.)

12 Damiexa

1
$1 \mathrm{c} \quad 2 \mathrm{~d} \quad 3 \mathrm{a} \quad 4 \mathrm{c} \quad 5 \mathrm{~b} \quad 6 \mathrm{c}$
2
[a] $\because \overrightarrow{\mathrm{AB}}$ is a tangent
$\therefore \overrightarrow{\mathrm{MA}} \perp \overrightarrow{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{MAB})=90^{\circ}$
, $\because \angle \mathrm{MBE}$ is an exterior angle of $\triangle \mathrm{AMB}$
$\therefore \mathrm{m}(\angle \mathrm{AMB})=120^{\circ}-90^{\circ}=30^{\circ} \quad$ (The req.)
[b] $\because \mathrm{AB}=\mathrm{CD}$ (properties of rectangle)
, $\because C E=C D$
$\therefore \mathrm{AB}=\mathrm{CE}$
$\therefore \mathrm{m}(\widehat{\mathrm{AB}})=\mathrm{m}(\widehat{\mathrm{CE}})$
(Q.E.D. 1)

Adding $m(\overparen{B E})$ to both sides
$\therefore \mathrm{m}(\widehat{\mathrm{AE}})=\mathrm{m}(\overparen{\mathrm{BC}})$
$\therefore \mathrm{AE}=\mathrm{BC}$
(Q.E.D. 2)

3
[a] $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{MXA})=90^{\circ}$
,$\because \mathrm{Y}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}} \quad \therefore \mathrm{m}(\angle \mathrm{MYA})=90^{\circ}$
From the quadrilateral AXMY :
$\therefore m(\angle E M D)=360^{\circ}-\left(90^{\circ}+90^{\circ}+80^{\circ}\right)$ $=100^{\circ}$
(First req.)
, $\because \mathrm{AB}=\mathrm{AC} \quad \therefore \mathrm{MX}=\mathrm{MY}$
, $\because M D=M E=r$
$\therefore \mathrm{XD}=\mathrm{YE}$
(Second req.)
[b] In $\triangle \mathrm{ABD}: \because \mathrm{AB}=\mathrm{AD}$
$\therefore \mathrm{m}(\angle \mathrm{ABD})=\mathrm{m}(\angle \mathrm{ADB})=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-2 \times 30^{\circ}=120^{\circ}$
,$\because m(\angle A)+m(\angle C)=120^{\circ}+60^{\circ}=180^{\circ}$
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral.
(Q.E.D.)

4

[a] $\because m(\angle \mathrm{D})=\frac{1}{2} m(\angle \mathrm{AMB})$
(inscribed and central angles substanded by $\overparen{\mathrm{AB}}$)
$\therefore \mathrm{m}(\angle \mathrm{D})=\frac{1}{2} \times 140^{\circ}=70^{\circ}$
, $\because \overline{\mathrm{AC}} / / \overline{\mathrm{DB}}, \overline{\mathrm{AD}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{DAC})+\mathrm{m}(\angle \mathrm{D})=180^{\circ}$
(two interior angles in the same side of the transversal)
$\therefore \mathrm{m}(\angle \mathrm{DAC})=180^{\circ}-70^{\circ}=110^{\circ} \quad$ (The req.)
[b] $\because \overrightarrow{\mathrm{CB}}$ bisects $\angle \mathrm{ACD}$
$\therefore m(\angle A C B)=m(\angle B C D)=65^{\circ}$
$, \because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments
$\therefore \mathrm{AB}=\mathrm{AC}$
\therefore In $\triangle \mathrm{ABC}$:
$m(\angle A B C)=m(\angle A C B)=65^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-\left(65^{\circ}+65^{\circ}\right)=50^{\circ}$ (First req.)
,$\because \mathrm{m}(\angle \mathrm{D})$ (inscribed) $=\mathrm{m}(\angle \mathrm{ACB})$ (tangency)
$\therefore \mathrm{m}(\angle \mathrm{D})=65^{\circ}$
(Second req.)

5

$\left[\right.$ a] $\mathrm{m}(\angle \mathrm{ADB})=\frac{1}{2} \mathrm{~m}(\widehat{\mathrm{AB}})=\frac{1}{2} \times 110^{\circ}=55^{\circ}$
(First req.)
$\because \mathrm{ABCD}$ is a cyclic quadriateral
$\therefore \mathrm{m}(\angle \mathrm{ADC})=\mathrm{m}(\angle \mathrm{CBE})=85^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BDC})=85^{\circ}-55^{\circ}=30^{\circ} \quad$ (Second req.)
[b] In $\triangle A B C: \because m(\angle B A C)=90^{\circ}, A C=\frac{1}{2} B C$
$\therefore \mathrm{m}(\angle \mathrm{B})=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{C})=180^{\circ}-\left(90^{\circ}+30^{\circ}\right)=60^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{DAB})=60^{\circ}$
$\therefore \overrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the vertices of $\triangle \mathrm{ABC}$
(Q.E.D.)

13 Kafr El-Sheikh

[a] 1 b
2 a
3 d
[b] $\because \mathrm{E}$ is the midpoint of $\overline{\mathrm{BC}}$
$\therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{BC}} \quad \therefore \mathrm{m}(\angle \mathrm{AEM})=90^{\circ}$
,$\because \overrightarrow{\mathrm{AD}}$ is a tangent to the circle
$\therefore \overline{\mathrm{MD}} \perp \overrightarrow{\mathrm{AD}}$
$\therefore \mathrm{m}(\angle \mathrm{ADM})=90^{\circ}$
From the quadrilateral ADME :
$\therefore \mathrm{m}(\angle \mathrm{DME})=360^{\circ}-\left(90^{\circ}+90^{\circ}+56^{\circ}\right)=124^{\circ}$
(The req.)

2

[a] 1 c c 2 b $\quad 3$ a
[b] $\because \mathrm{m}(\overparen{B C})=2 \mathrm{~m}(\angle B A C)=60^{\circ}$
,$\because \overline{\mathrm{AB}}$ is diameter in the circle M
$\therefore \mathrm{m}(\widehat{\mathrm{AB}})=180^{\circ}$
$\therefore \mathrm{m}(\widehat{\mathrm{AC}})=180^{\circ}-60^{\circ}=120^{\circ}$
,$\because \mathrm{D}$ is the midpoint of $\overparen{\mathrm{AC}}$
$\therefore \mathrm{m}(\widehat{\mathrm{AD}})=\mathrm{m}(\overparen{\mathrm{DC}})=\frac{120^{\circ}}{2}=60^{\circ} \quad$ (First req.)
$\therefore \mathrm{m}(\angle \mathrm{ACD})=\frac{1}{2} \mathrm{~m}(\overparen{\mathrm{AD}})=\frac{1}{2} \times 60^{\circ}=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CAB})=\mathrm{m}(\angle \mathrm{ACD})$ but they are alternate angles
$\therefore \overline{\mathrm{AB}} / / \overline{\mathrm{DC}}$
(Second req.)

3

[a] Construction :
Draw $\overline{\mathrm{MX}}, \overline{\mathrm{MY}}$

Proof:

$\because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two
 tangent-segments to the smaller circle.
$, \overline{\mathrm{MX}}, \overline{\mathrm{MY}}$ are two radii
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
, $\because M X=M Y=r$ (radii of the smaller circle)
$\therefore \mathrm{AB}=\mathrm{AC}$
(Q.E.D.)
[b] In $\triangle \mathrm{ABC}$:
$\because \mathrm{AC}=\frac{1}{2} \mathrm{BC}, \mathrm{m}(\angle \mathrm{BAC})=90^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{B})=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{C})=180^{\circ}-\left(90^{\circ}+30^{\circ}\right)=60^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{BAD})=60^{\circ}$
$\therefore \overrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the vertices of $\triangle A B C$
(Q.E.D.)

4

[a] $\because \overline{\mathrm{AD}}, \overline{\mathrm{AF}}$ are two tangent-segments to the circle
$\therefore \mathrm{AD}=\mathrm{AF}=3 \mathrm{~cm} . \quad \therefore \mathrm{CF}=8-3=5 \mathrm{~cm}$.
, $\overline{\mathrm{BD}}, \overline{\mathrm{BE}}$ are two tangent-segments to the circle
$\therefore \mathrm{BD}=\mathrm{BE}=2 \mathrm{~cm}$.
$, \because \overline{\mathrm{CE}}, \overline{\mathrm{CF}}$ are two tangent-segments to the circle
$\therefore \mathrm{CE}=\mathrm{CF}=5 \mathrm{~cm}$.
$\therefore \mathrm{BC}=2+5=7 \mathrm{~cm}$.
(The req.)
[b] $\because \mathrm{m}(\angle \mathrm{BCD})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{M})$
(inscribed and central angles subtended by $\overparen{B D}$)
$\therefore \mathrm{m}(\angle \mathrm{BCD})=\frac{1}{2} \times 130^{\circ}=65^{\circ}$
$\because \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}, \stackrel{\rightharpoonup}{\mathrm{BC}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{BCD})=65^{\circ}$
(alternate angles)
$\because \overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent-segments to the circle M
$\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore m(\angle A C B)=m(\angle A B C)=65^{\circ}$
\therefore In $\triangle \mathrm{ABC}$:
$\mathrm{m}(\angle \mathrm{A})=180^{\circ}-2 \times 65^{\circ}=50^{\circ}$
(The req.)

5

[a] State by yourself.
[b] $\because \overline{\mathrm{AB}}$ is a diameter of the circle
$\therefore \mathrm{m}(\angle \mathrm{ACB})=90^{\circ}$
(First req.)
, $\because \mathrm{m}(\angle \mathrm{ACE})=\mathrm{m}(\angle \mathrm{ADE})=90^{\circ}$
and they are drawn on $\overline{\mathrm{AE}}$ and on one side of it
\therefore ACDE is a cyclic quadrilateral. (Second req.)

14 El-Beheira

1
$\begin{array}{llllll}1 \mathrm{~d} & 2 & \mathrm{~b} & 3 \mathrm{~b} & 4 \mathrm{a} & 5 \\ \mathrm{~d} & 6 & \mathrm{c}\end{array}$
2
[a] In $\triangle \mathrm{ABC}: \because \mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{C})$
$\therefore \mathrm{AB}=\mathrm{AC}$
, $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}} \quad \therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$
,$\because \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{MX}=\mathrm{MY}$
(Q.E.D.)
[b] $\because \mathrm{ABCD}$ is a cyclic quadrilateral.
$\therefore \mathrm{m}(\angle \mathrm{ADC})=\mathrm{m}(\angle \mathrm{CBE})=85^{\circ}$
,$\left.\because m(\angle \mathrm{ADB})=\frac{1}{2} \mathrm{~m} \overparen{(\mathrm{AB}}\right)=\frac{1}{2} \times 110^{\circ}=55^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BDC})=85^{\circ}-55^{\circ}=30^{\circ} \quad$ (The req.)

3
[a] $\because \overline{\mathrm{CM}} / / \overline{\mathrm{AB}}, \overline{\mathrm{AM}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{CMA})=\mathrm{m}(\angle \mathrm{A})=60^{\circ}$ (alternate angles)
, $\because m(\angle B)=\frac{1}{2} m(\angle C M A)$
(inscribed and central angles subtended by $\overparen{A C}$)
$\therefore \mathrm{m}(\angle \mathrm{B})=\frac{1}{2} \times 60^{\circ}=30^{\circ} \quad$ (The req.)
[b] $\because m(\angle \mathrm{E})=\frac{1}{2}[\mathrm{~m}(\overparen{\mathrm{CA}})-\mathrm{m}(\widehat{\mathrm{BD}})]$
$\therefore 30^{\circ}=\frac{1}{2}\left[80^{\circ}-\mathrm{m}(\overparen{\mathrm{BD}})\right]$
$\therefore 60^{\circ}=80^{\circ}-\mathrm{m}(\overparen{\mathrm{BD}})$
$\therefore \mathrm{m}(\overparen{\mathrm{BD}})=80^{\circ}-60^{\circ}=20^{\circ}$
, $\because \overline{\mathrm{BA}}$ is a diameter in the circle
$\therefore \mathrm{m}(\overparen{\mathrm{BA}})=180^{\circ}$
$\therefore \mathrm{m}(\widehat{\mathrm{CD}})=180^{\circ}-\left(80^{\circ}+20^{\circ}\right)=80^{\circ} \quad$ (The req.)

4

[a] $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{AXY})=90^{\circ}$
, $\because \overrightarrow{Y B}$ is a tangent to the circle
$\therefore \overline{\mathrm{MB}} \perp \overline{\mathrm{BY}}$ $\therefore \mathrm{m}(\angle \mathrm{MBY})=90^{\circ}$
, $\because m(\angle A X Y)=m(\angle A B Y)$ and they are drawn on $\overline{\mathrm{AY}}$ and on one side of it
$\therefore \mathrm{AXBY}$ is a cyclic quadrilateral.
(Q.E.D.)
[b] In $\triangle A M C: \because A M=M C=r$
$\therefore \mathrm{m}(\angle \mathrm{MAC})=\mathrm{m}(\angle \mathrm{ACM})$
$\because m(\angle B A C)=m(\angle M A C)$
$\therefore \mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle \mathrm{ACM})$ and they are alternate angles.
$\therefore \overline{\mathrm{AB}} / / \overline{\mathrm{CM}}$
$\because \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}} \quad \therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$
, $\because \overline{\mathrm{AB}} / / \overline{\mathrm{CM}}$
$\therefore \overline{\mathrm{DM}} \perp \overline{\mathrm{CM}}$
(Q.E.D.)

5

[a] $\because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangents
$\therefore \mathrm{AB}=\mathrm{AC}$
\therefore In $\triangle \mathrm{ABC}$:
$m(\angle \mathrm{ABC})=m(\angle \mathrm{ACB})=\frac{180^{\circ}-40^{\circ}}{2}=70^{\circ}$
, $\because \mathrm{m}(\angle \mathrm{D})$ (inscribed) $=\mathrm{m}(\angle \mathrm{ABC})$ (tangency)
$\therefore \mathrm{m}(\angle \mathrm{D})=70^{\circ}$
(The req.)
[b] $\because \overrightarrow{X A}, \overrightarrow{X B}$ are two tangents to the circle
$\therefore \mathrm{XA}=\mathrm{XB}$
$\therefore \operatorname{In} \triangle \mathrm{ABX}$:
$m(\angle X A B)=m(\angle X B A)=\frac{180^{\circ}-50}{2}=65^{\circ}$
, $\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{BAD})+\mathrm{m}(\angle \mathrm{DCB})=180^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BAD})=180^{\circ}-115^{\circ}=65^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{XAB})=\mathrm{m}(\angle \mathrm{BAD})$
$\therefore \overrightarrow{\mathrm{AB}}$ bisects $\angle \mathrm{DAX}$
(Q.E.D.1)
, $\because m(\angle \mathrm{ADB})$ (inscribed)

$$
=\mathrm{m}(\angle \mathrm{XAB})(\text { tangency })=65^{\circ}
$$

$\therefore \mathrm{m}(\angle \mathrm{BAD})=\mathrm{m}(\angle \mathrm{ADB})$
$\therefore \mathrm{BD}=\mathrm{BA}$
(Q.E.D.2)

15 El-Fayoum

빈
$1 \mathrm{~d} \quad 2 \mathrm{c} \quad 3 \mathrm{c} \quad 4 \mathrm{~d} \quad 5 \mathrm{~d} \quad 6 \mathrm{c}$
2
[a] $\because \overrightarrow{\mathrm{CE}}$ bisects $\angle \mathrm{DCF}$
$\therefore \mathrm{m}(\angle \mathrm{DCF})=2 \times 53^{\circ}=106^{\circ}$
, $\because \overline{\mathrm{AD}} / / \overline{\mathrm{BC}}, \overline{\mathrm{DC}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{D})=\mathrm{m}(\angle \mathrm{DCF})=106^{\circ}$ (alternate angles)
$\therefore m(\angle B)+m(\angle D)=74^{\circ}+106^{\circ}=180^{\circ}$
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral.
(Q.E.D.)
[b] $\because \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$
$\therefore \mathrm{m}(\angle \mathrm{ADM})=90^{\circ}$
, $\because \mathrm{E}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{AEM})=90^{\circ}$
From the quadrilateral ADME :
$\therefore \mathrm{m}(\angle \mathrm{DME})=360^{\circ}-\left(90^{\circ}+90^{\circ}+65^{\circ}\right)=115^{\circ}$
(The req.)
3
[a] $\because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents $\quad \therefore \mathrm{AB}=\mathrm{AC}$
\therefore In $\triangle \mathrm{ABC}$:
$\mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=\frac{180^{\circ}-70^{\circ}}{2}=55^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{D})$ (inscribed) $=\mathrm{m}(\angle \mathrm{ABC})$ (tangency) $=55^{\circ}$

In $\triangle B C D: \because B D=B C$
$\therefore m(\angle D)=m(\angle B C D)=55^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{DBC})=180^{\circ}-2 \times 55^{\circ}=70^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ABD})=55^{\circ}+70^{\circ}=125^{\circ}$
(The req.)
[b] $\because M C=M A=r \quad \therefore M C=M A=10-4=6 \mathrm{~cm}$.
,$\because \overrightarrow{B A}$ is a tangent to the circle M
$\therefore \overline{\mathrm{MA}} \perp \overrightarrow{\mathrm{BA}} \quad \therefore \mathrm{m}(\angle \mathrm{MAB})=90^{\circ}$
$\therefore(\mathrm{AB})^{2}=(\mathrm{MB})^{2}-(\mathrm{MA})^{2}=10^{2}-6^{2}=64$
$\therefore A B=\sqrt{64}=8 \mathrm{~cm}$.
(The req.)

4

[a] $\because \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \mathrm{AB}=2 \times \mathrm{BX}=2 \times 5=10 \mathrm{~cm}$.
$, \because \overline{M Y} \perp \overline{C D}, M X=M Y$
$\therefore C D=A B=10 \mathrm{~cm}$.
(The req.)
[b] In $\triangle \mathrm{ABD}: \because \mathrm{AB}=\mathrm{AD}$
$\therefore \mathrm{m}(\angle \mathrm{ABD})=\mathrm{m}(\angle \mathrm{ADB})=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-2 \times 30^{\circ}=120^{\circ}$
,$\because m(\angle A)+m(\angle C)=120^{\circ}+60^{\circ}=180^{\circ}$
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral.
(Q.E.D.)

5

[a] $\because A B=A C$
$\therefore \mathrm{m}(\overparen{\mathrm{AB}})=\mathrm{m}(\overparen{\mathrm{AC}})$
$\therefore \mathrm{m}(\angle \mathrm{AEB})=\mathrm{m}(\angle \mathrm{AEC})$
(Q.E.D.)
[b] $\because \overline{X Y} / / \overline{\mathrm{BC}}, \overline{\mathrm{AB}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{AXY})=\mathrm{m}(\angle \mathrm{ABC})$ (corresponding angles)
,$\because \mathrm{m}(\angle \mathrm{ABC})$ (inscribed) $=\mathrm{m}(\angle \mathrm{CAD})$ (tangency)
$\therefore \mathrm{m}(\angle \mathrm{AXY})=\mathrm{m}(\angle \mathrm{YAD})$
$\therefore \overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the points A, X and Y
(Q.E.D.)

16 Beni Suef

[1]
$1 \mathrm{~b} \quad 2 \mathrm{~d} \quad 3 \mathrm{~d} \quad 4 \mathrm{c} \quad 5 \mathrm{a} \quad 6 \mathrm{c}$
2
[a] In $\triangle A B D: \because A B=A D$
$\therefore \mathrm{m}(\angle \mathrm{ABD})=\mathrm{m}(\angle \mathrm{ADB})=40^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-2 \times 40^{\circ}=100^{\circ}$
,$\because m(\angle A)+m(\angle C)=100^{\circ}+80^{\circ}=180^{\circ}$
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral.
(Q.E.D.)
[b] $\because \mathrm{m}(\angle \mathrm{E})=\frac{1}{2}[\mathrm{~m}(\overparen{\mathrm{AC}})-\mathrm{m}(\widehat{\mathrm{BD}})]$
$\therefore 20^{\circ}=\frac{1}{2}\left[80^{\circ}-\mathrm{m}(\widehat{\mathrm{BD}})\right]$
$\therefore 40^{\circ}=80^{\circ}-\mathrm{m}(\overparen{\mathrm{BD}})$
$\therefore \mathrm{m}(\widehat{\mathrm{BD}})=80^{\circ}-40^{\circ}=40^{\circ}$
$\because \overline{\mathrm{AB}}$ is a diameter
$\therefore \mathrm{m}(\widehat{\mathrm{AB}})=180^{\circ}$
$\therefore \mathrm{m}(\widehat{\mathrm{CD}})=180^{\circ}-\left(80^{\circ}+40^{\circ}\right)=60^{\circ}$ (The req.)

3

[a] $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{MXA})=90^{\circ}$
, $\because \mathrm{Y}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{MYA})=90^{\circ}$
From the quadrilateral AXMY
$\therefore \mathrm{m}(\angle \mathrm{DME})=360^{\circ}-\left(90^{\circ}+90^{\circ}+60^{\circ}\right)=120^{\circ}$ (First req.)
, $\because \mathrm{AB}=\mathrm{AC} \quad \therefore M X=M Y$
,$\because M D=M E=r \quad \therefore X D=Y E \quad$ (Second req.)
[b] $\because \mathrm{m}(\angle \mathrm{BDC})$ (inscribed)

$$
=\mathrm{m}(\angle \mathrm{ABC}) \text { (tangency })=65^{\circ}
$$

$, \because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents $\quad \therefore \mathrm{AB}=\mathrm{AC}$
\therefore In $\triangle \mathrm{ABC}: \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=65^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BAC})=180^{\circ}-2 \times 65^{\circ}=50^{\circ}$ (The req.)

4

[a] $\because E$ is the midpoint of $\overline{\mathrm{AD}}$
$\therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{AD}}$
$\therefore \mathrm{m}(\angle \mathrm{MEC})=90^{\circ}$
, $\because \overline{\mathrm{BC}}$ is a tangent-segment
$\therefore \overline{\mathrm{BC}} \perp \overline{\mathrm{AB}}$
$\therefore \mathrm{m}(\angle \mathrm{MBC})=90^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{MEC})+\mathrm{m}(\angle \mathrm{MBC})=90^{\circ}+90^{\circ}=180^{\circ}$
\therefore EMBC is a cyclic quadrilateral.
(Q.E.D.)
[b] $\because \overline{\mathrm{MC}} / / \overline{\mathrm{AB}}, \overline{\mathrm{AM}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{AMC})=\mathrm{m}(\angle \mathrm{MAB})=60^{\circ}$
(alternate angles)
,$\because m(\angle B)=\frac{1}{2} m(\angle A M C)$
(inscribed and central angles subtended by $\overparen{\mathrm{AC}}$
$\therefore m(\angle B)=\frac{1}{2} \times 60^{\circ}=30^{\circ}$
(The req.)
5
[a] $\because \overline{\mathrm{AB}} / / \overline{\mathrm{XY}} \quad \therefore \mathrm{m}(\widehat{\mathrm{AX}})=\mathrm{m}(\widehat{\mathrm{BY}})$
,$\because \mathrm{m}(\widehat{\mathrm{XC}})=\mathrm{m}(\widehat{\mathrm{YC}})$
adding (1), (2) : $\therefore \mathrm{m}(\widehat{\mathrm{AC}})=\mathrm{m}(\widehat{\mathrm{BC}})$
$\therefore \mathrm{AC}=\mathrm{BC}$
(Q.E.D.)
[b] $\because \overrightarrow{\mathrm{XA}}, \overrightarrow{\mathrm{XB}}$ are two tangents to the circle
$\therefore \mathrm{XA}=\mathrm{XB}$
$\therefore \ln \triangle \mathrm{ABX}$:
$\mathrm{m}(\angle \mathrm{XAB})=\mathrm{m}(\angle \mathrm{XBA})=\frac{180^{\circ}-70^{\circ}}{2}=55^{\circ}$
, $\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{DAB})=180^{\circ}-125^{\circ}=55^{\circ}$
From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{DAB})=\mathrm{m}(\angle \mathrm{XAB})$
$\therefore \overrightarrow{\mathrm{AB}}$ bisects $\angle \mathrm{DAX}$
(Q.E.D.)

17 El-Menia

11
$1 \mathrm{c} \quad 2 \mathrm{a}$ 3 d 4 c 5 c 6 b
12
[a] $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$
, $\because \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}, \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{MX}=\mathrm{MY}$
(Q.E.D.)
[b] $\because M B=M C=r$
\therefore In $\triangle \mathrm{MBC}$:
$\mathrm{m}(\angle \mathrm{MBC})=\mathrm{m}(\angle \mathrm{MCB})=25^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BMC})=180^{\circ}-2 \times 25^{\circ}=130^{\circ}$
,$\because m(\angle B A C)=\frac{1}{2} m(\angle B M C)$
(inscribed and central angles subtended by $\widehat{B C}$)
$\therefore \mathrm{m}(\angle \mathrm{BAC})=\frac{1}{2} \times 130^{\circ}=65^{\circ} \quad$ (The req.)

3

[a] $\ln \triangle \mathrm{ABC}$:
$\because A B=A C$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=50^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-2 \times 50^{\circ}=80^{\circ}$
, $\because \mathrm{m}(\angle \mathrm{A})+\mathrm{m}(\angle \mathrm{D})=80^{\circ}+100^{\circ}=180^{\circ}$
$\therefore \mathrm{ABDC}$ is a cyclic quadrilateral.
[b] $\because m(\angle B D C)$ (inscribed)

$$
=\mathrm{m}(\angle \mathrm{BAC})(\text { tangency })=70^{\circ},
$$

$\because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to the circle
$\therefore \mathrm{AB}=\mathrm{AC}$
\therefore In $\triangle \mathrm{ABC}: \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=70^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-\left(70^{\circ}+70^{\circ}\right)=40^{\circ}$ (The req.)

4
[a] $\because \stackrel{\mathrm{CD}}{\mathrm{CD}} / / \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\widehat{\mathrm{AC}})=\mathrm{m}(\overparen{\mathrm{BC}})$
$\therefore \mathrm{AC}=\mathrm{BC}$
(Q.E.D.)
[b] $\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{D})=\mathrm{m}(\angle \mathrm{ABE})=110^{\circ}$
In $\triangle \mathrm{ADC}$:
$\therefore \mathrm{m}(\angle \mathrm{ACD})=180^{\circ}-\left(110^{\circ}+35^{\circ}\right)=35^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ACD})=\mathrm{m}(\angle \mathrm{CAD})=35^{\circ}$
$\therefore \mathrm{m}(\overparen{\mathrm{DA}})=\mathrm{m}(\overparen{\mathrm{DC}})$

5

[a] $\ln \triangle \mathrm{ADE}$:
$\because \mathrm{AE}=\mathrm{DE} \quad \therefore \mathrm{m}(\angle \mathrm{DAC})=\mathrm{m}(\angle \mathrm{ADB})$
$\therefore \mathrm{m}(\overparen{\mathrm{DC}})=\mathrm{m}(\overparen{\mathrm{AB}})$
$\therefore m(\angle E B C)=m(\angle E C B)$
In $\triangle \mathrm{EBC}: \therefore \mathrm{EC}=\mathrm{EB}$
(Q.E.D.)
[b] $\because m(\angle \mathrm{CMB})=2 \mathrm{~m}(\angle \mathrm{CAB})=2 \times 50^{\circ}=100^{\circ}$
(central and inscribed angles subtended by $\overparen{C B}$)
$\therefore \mathrm{m}$ (reflex $\angle \mathrm{CMB})=360^{\circ}-100^{\circ}=260^{\circ}$
(The req.)

18
 Assiut

1
$1 \mathrm{~d} \quad 2 \mathrm{c} \quad 3 \mathrm{~b} \quad 4 \mathrm{a} \quad 5 \mathrm{~d} \quad 6 \mathrm{c}$
E
$[\mathrm{a}] \because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{MXA})=90^{\circ}$
,$\because \mathrm{Y}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}} \quad \therefore \mathrm{m}(\angle \mathrm{MYA})=90^{\circ}$
From the quadrilateral AXMY :
$\therefore \mathrm{m}(\angle \mathrm{DME})=360^{\circ}-\left(90^{\circ}+90^{\circ}+50^{\circ}\right)=130^{\circ}$ (First req.)
,$\because A B=A C \quad \therefore M X=M Y$
, $\because M D=M E=r$
$\therefore \mathrm{XD}=\mathrm{YE}$ (Second req.)
[b] $\because A B=D C \quad \therefore m(\overparen{A B})=m(\overparen{D C})$
adding $\mathrm{m}(\widehat{\mathrm{BC}})$ to both sides
$\therefore \mathrm{m}(\overparen{\mathrm{AC}})=\mathrm{m}(\widehat{\mathrm{BD}}) \quad \therefore \mathrm{AC}=\mathrm{BD}$
(Q.E.D.)

3
$[\mathrm{a}] \because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents $\quad \therefore \mathrm{AB}=\mathrm{AC}$
In $\triangle \mathrm{ABC}$:
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=\frac{180^{\circ}-50^{\circ}}{2}=65^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BDC})$ (inscribed)
$=\mathrm{m}(\angle \mathrm{ABC})$ (tangency) $=65^{\circ} \quad$ (The req.)
[b] $\because \overline{\mathrm{BC}}$ is a diameter $\therefore \mathrm{m}(\angle \mathrm{A})=90^{\circ}$,$\because \overline{\mathrm{ED}} \perp \overline{\mathrm{BC}} \quad \therefore m(\angle E D B)=90^{\circ}$
,$\because \mathrm{m}(\angle \mathrm{A})+\mathrm{m}(\angle E D B)=90^{\circ}+90^{\circ}=180^{\circ}$
\therefore ABDE is a cyclic quadrilateral. (Q.E.D. 1)
$\therefore \mathrm{m}(\angle \mathrm{CED})=\mathrm{m}(\angle \mathrm{B})$
,$\because m(\angle \mathrm{~B})=\frac{1}{2} \mathrm{~m}(\widehat{\mathrm{AC}})$
$\therefore \mathrm{m}(\angle \mathrm{CED})=\frac{1}{2} \mathrm{~m}(\overparen{\mathrm{AC}})$

4

[a] $\because \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$
$, \because \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}, \mathrm{MD}=\mathrm{ME}$
$\therefore \mathrm{AB}=\mathrm{AC}$
\therefore In $\triangle \mathrm{ABC}$:
$m(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=65^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BAC})=180^{\circ}-2 \times 65^{\circ}=50^{\circ}$ (The req.)
[b] $\because \mathrm{ABCD}$ is a cyclic quadrilateral.
$\therefore m(\angle \mathrm{BCD})+\mathrm{m}(\angle \mathrm{BAD})=180^{\circ}$
$\therefore m(\angle B C D)=180^{\circ}-120^{\circ}=60^{\circ}$
, $\because \overrightarrow{\mathrm{BO}} / / \overrightarrow{\mathrm{DC}}, \stackrel{\rightharpoonup}{\mathrm{BC}}$ is a transversal.
$\therefore \mathrm{m}(\angle \mathrm{CBO})=\mathrm{m}(\angle \mathrm{BCD})=60^{\circ}$
(alternate angles)
$\therefore \mathrm{m}(\angle \mathrm{CBE})=60^{\circ}+55^{\circ}=115^{\circ}$
$\because \angle C B E$ is an exterior angle of a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{ADC})=\mathrm{m}(\angle \mathrm{CBE})=115^{\circ} \quad$ (The req.)
5
[a] $\mathrm{m}(\angle \mathrm{ADB})=\frac{1}{2} \mathrm{~m}(\widehat{\mathrm{AB}})=\frac{1}{2} \times 50^{\circ}=25^{\circ}$
(First req.)
, $\mathrm{m}(\overparen{\mathrm{ADB}})=360^{\circ}-50^{\circ}=310^{\circ} \quad$ (Second req.)
[b] $\because B C D E$ is a eyclic quadrilateral
$\therefore m(\angle C B E)+m(\angle D)=180^{\circ}$
$\therefore m(\angle \mathrm{CBE})=180^{\circ}-125^{\circ}=55^{\circ}$
, $\because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to the circle
$\therefore \mathrm{AB}=\mathrm{AC}$
\therefore In $\triangle \mathrm{ABC}$:
$\mathrm{m}(\angle \mathrm{ACB})=\mathrm{m}(\angle \mathrm{ABC})=\frac{180^{\circ}-70^{\circ}}{2}=55^{\circ}$
, $\because \mathrm{m}(\angle \mathrm{BEC})=$ (inscribed)

$$
=\mathrm{m}(\angle \mathrm{ACB})(\text { tangency })=55^{\circ}
$$

$\therefore \operatorname{In} \triangle \mathrm{CBE}: \mathrm{m}(\angle \mathrm{CBE})=\mathrm{m}(\angle \mathrm{BEC})=55^{\circ}$
$\therefore \mathrm{CB}=\mathrm{CE}$
(Q.E.D. 1)
, $\because m(\angle \mathrm{CBE})=(\angle \mathrm{ABC})=55^{\circ}$
$\therefore \overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABE}$
(Q.E.D. 2)

19 Souhag

1
1 b 2 a $3 \mathrm{c} 4 \mathrm{~b} \quad 5 \mathrm{c} \quad 6 \mathrm{~d}$
2
[a] $\because \mathrm{H}$ is the midpoint of $\overline{\mathrm{BC}}$
$\therefore \overline{\mathrm{MH}} \perp \overline{\mathrm{BC}}$
$\therefore \mathrm{m}(\angle \mathrm{MHA})=90^{\circ}$
,$\because \overrightarrow{\mathrm{AD}}$ is a tangent
$\therefore \overline{\mathrm{MD}} \perp \overrightarrow{\mathrm{AD}}$
$\therefore \mathrm{m}(\angle \mathrm{MDA})=90^{\circ}$
\therefore From the quadrilateral ADMH :
$\therefore \mathrm{m}(\angle \mathrm{DMH})=360^{\circ}-\left(90^{\circ}+90^{\circ}+56^{\circ}\right)=124^{\circ}$ (The req.)
[b] In $\triangle \mathrm{ABD}: \because \mathrm{AB}=\mathrm{AD}$
$\therefore \mathrm{m}(\angle \mathrm{ABD})=\mathrm{m}(\angle \mathrm{ADB})=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-2 \times 30^{\circ}=120^{\circ}$
, $\because \mathrm{m}(\angle \mathrm{A})+\mathrm{m}(\angle \mathrm{C})=120^{\circ}+60^{\circ}=180^{\circ}$
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral
(Q.E.D.)

3

[a] $\because \overline{\mathrm{AD}}, \overline{\mathrm{AF}}$ are two tangent-segments to the circle
$\therefore \mathrm{AD}=\mathrm{AF}=5 \mathrm{~cm}$.
$, \because \overline{\mathrm{BD}}, \overline{\mathrm{BE}}$ are two tangent-segments to the circle
$\therefore \mathrm{BD}=\mathrm{BE}=4 \mathrm{~cm}$.
$, \because \overline{\mathrm{CE}}, \overline{\mathrm{CF}}$ are two tangent-segments to the circle
$\therefore \mathrm{CE}=\mathrm{CF}=3 \mathrm{~cm}$.
\therefore The perimeter of $\triangle \mathrm{ABC}=5+5+4+4+3+3$
$=24 \mathrm{~cm}$. (The req.)
[b] $\because \angle \mathrm{CBE}$ is an exterior angle of the cyclic quadrilateral ABCD
$\therefore \mathrm{m}(\angle \mathrm{ADC})=\mathrm{m}(\angle \mathrm{CBE})=85^{\circ}$
, $\because \mathrm{m}(\angle \mathrm{ADB})=\frac{1}{2} \mathrm{~m}(\widehat{\mathrm{AB}})$

$$
=\frac{1}{2} \times 110^{\circ}=55^{\circ}
$$

$\therefore \mathrm{m}(\angle \mathrm{BDC})=85^{\circ}-55^{\circ}=30^{\circ}$
(The req.)

4

[a] $\because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangent to the circle
$\therefore \mathrm{AB}=\mathrm{AC}$
In $\triangle \mathrm{ABC}$:
$\mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=\frac{180^{\circ}-70^{\circ}}{2}=55^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BEC})$ (inscribed)
$=\mathrm{m}(\angle \mathrm{ABC})$ (tangency $)=55^{\circ}$
,$\because B C D E$ is a cyclic qu.._rilateral.
$\therefore \mathrm{m}(\angle \mathrm{CBE})+\mathrm{m}(\angle \mathrm{CDE})=180^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CBE})=180^{\circ}-125^{\circ}=55^{\circ}$
In $\triangle \mathrm{BCE}: \therefore \mathrm{m}(\angle \mathrm{BEC})=\mathrm{m}(\angle \mathrm{CBE})$
$\therefore \mathrm{CB}=\mathrm{CE}$
(Q.E.D.)
[b] $\because \mathrm{AB}=\mathrm{CD}$ (properties of the rectangle)
,$\because C E=C D$
$\therefore \mathrm{AB}=\mathrm{CE}$
$\therefore \mathrm{m}(\widehat{\mathrm{AB}})=\mathrm{m}(\overparen{\mathrm{CE}})$ and adding $\mathrm{m}(\overparen{\mathrm{BE}})$ to both sides.
$\therefore \mathrm{m}(\widehat{\mathrm{AE}})=\mathrm{m}(\widehat{\mathrm{BC}})$
$\therefore \mathrm{AE}=\mathrm{BC}$
(Q.E.D.)

5
[a] $\ln \triangle \mathrm{ABC}$:
$\because m(\angle B)=m(\angle C)$
$\therefore \mathrm{AB}=\mathrm{AC}$
,$\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$
$, \because \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}, \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{MX}=\mathrm{MY}$
[b] \because ABDC is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{B})+\mathrm{m}(\angle \mathrm{C})=180^{\circ}$
$\therefore m(\angle B)=180^{\circ}-115^{\circ}=65^{\circ}$
, $\because \overline{\mathrm{AB}}$ is a diameter $\therefore \mathrm{m}(\angle \mathrm{ADB})=90^{\circ}$
In $\triangle \mathrm{ABD}$:
$\therefore \mathrm{m}(\angle \mathrm{DAB})=180^{\circ}-\left(90^{\circ}+65^{\circ}\right)=25^{\circ}$ (The req.)

1

[2]
[a]

\therefore We can draw two circles.

[b] Construction :

Draw $\overline{\mathrm{ME}}, \overline{\mathrm{MF}}$
Proof:

$\because \overline{\mathrm{AB}}, \overline{\mathrm{CD}}$ are two tangent-segments to the smaller circle

Geometry

$\therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MF}} \perp \overline{\mathrm{CD}}$
, $\because M E=M F=r$ (radii lengths of the smaller circle)
$\therefore \mathrm{AB}=\mathrm{CD}$
(Q.E.D.)

3

(a) $\because \overrightarrow{\mathrm{CE}}$ bisects $\angle \mathrm{DCF}$
$\therefore \mathrm{m}(\angle \mathrm{DCF})=2 \times 55^{\circ}=110^{\circ}$
$, \because \overrightarrow{\mathrm{AD}} / / \overrightarrow{\mathrm{BC}}, \overrightarrow{\mathrm{CD}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{D})=\mathrm{m}(\angle \mathrm{DCF})=110^{\circ}$ (alternate angles)
$\therefore \mathrm{m}(\angle \mathrm{B})+\mathrm{m}(\angle \mathrm{D})=70^{\circ}+110^{\circ}=180^{\circ}$
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral. (Q.E.D.)
[b] $\because \mathrm{m}(\widehat{\mathrm{AB}})=\mathrm{m}(\widehat{\mathrm{BC}})=\mathrm{m}(\widetilde{\mathrm{AC}})=\frac{360^{\circ}}{3}=120^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{AMB})=\mathrm{m}(\widehat{\mathrm{AB}})=120^{\circ}$
, $\because M A=M B=r$
$\therefore \mathrm{m}(\angle \mathrm{ABM})=\mathrm{m}(\angle \mathrm{BAM})=\frac{180^{\circ}-120^{\circ}}{2}$
$=30^{\circ}$ (First req.)
$\because m(\overparen{A B})=m(\overparen{B C})=m(\overparen{A C})$
$\therefore A B=B C=A C$
$\therefore \triangle \mathrm{ABC}$ is an equilateral triangle. (Second req.)

4

[a] $\because \mathrm{m}(\angle \mathrm{ABD})=\mathrm{m}(\angle \mathrm{ACD})=80^{\circ}$
(two inscribed angles subtended by $\widehat{\mathrm{AD}}$)
, $\angle A E D$ is an exterior angle of $\triangle E C D$
$\therefore \mathrm{m}(\angle \mathrm{D})=110^{\circ}-80^{\circ}=30^{\circ}$
(First req.)
$\mathrm{m}(\widehat{\mathrm{AD}})=2 \mathrm{~m}(\angle \mathrm{~B})=2 \times 80^{\circ}=160^{\circ}$ (Second req.)
[b] $\because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments
$\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=65^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-2 \times 65^{\circ}=50^{\circ}$
(First req.)
, $\mathrm{m}(\angle \mathrm{D})$ (inscribed) $=\mathrm{m}(\angle \mathrm{ACB})$ (tangency)

$$
=65^{\circ}
$$

(Second req.)

5

[a] $\because \overline{\mathrm{AB}}$ is a tangent-segment
$\therefore \overline{\mathrm{MB}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{MBA})=90^{\circ}$
, $\because \mathrm{E}$ is the midpoint of $\overline{\mathrm{CD}}$
$\therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{CD}}$
$\therefore \mathrm{m}(\angle \mathrm{MEA})=90^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{MBA})+\mathrm{m}(\angle \mathrm{MEA})=90^{\circ}+90^{\circ}=180^{\circ}$
$\therefore \mathrm{ABME}$ is a cyclic quadrilateral (First req.)
$\therefore \mathrm{m}(\angle \mathrm{BMF})=\mathrm{m}(\angle \mathrm{A})=30^{\circ}$
$\therefore \mathrm{m}(\overparen{\mathrm{BF}})=\mathrm{m}(\angle \mathrm{BMF})=30^{\circ} \quad$ (Second req.)
[b] $\because \mathrm{m}(\angle \mathrm{XZY})$ (inscribed) $=\mathrm{m}(\angle \mathrm{LXY})$ (tangency)
, $\because \overline{\mathrm{EF}} / / \overline{\mathrm{YZ}}, \overline{\mathrm{XZ}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{XFE})=\mathrm{m}(\angle \mathrm{XZY})$ (corresponding angles)
$\therefore \mathrm{m}(\angle \mathrm{XFE})=\mathrm{m}(\angle \mathrm{LXE})$
$\therefore \overrightarrow{\mathrm{LX}}$ is a tangent to the circle passing through the points X, E and F
(Q.E.D.)

21 Luxor

1
1a 2 d 3a 4b 5 d Be

E
[a] $\because \mathrm{m}(\angle \mathrm{A})=\frac{1}{2}[\mathrm{~m}(\overparen{\mathrm{EC}})-\mathrm{m}(\overparen{\mathrm{BD}})]$
$\therefore 30^{\circ}=\frac{1}{2}\left[120^{\circ}-\mathrm{m}(\widehat{\mathrm{BD}})\right]$
$\therefore 60^{\circ}=120^{\circ}-\mathrm{m}(\widehat{\mathrm{BD}})$
$\therefore \mathrm{m}(\overparen{\mathrm{BD}})=120^{\circ}-60^{\circ}=60^{\circ} \quad$ (First req.)
,$\because \mathrm{m}(\widehat{\mathrm{BC}})=\mathrm{m}(\overparen{\mathrm{DE}}) \quad \therefore \mathrm{BC}=\mathrm{DE}$
By adding $\mathrm{m}(\overparen{\mathrm{BD}}$) to both sides.
$\therefore \mathrm{m}(\overparen{C D})=\mathrm{m}(\overparen{E B}) \quad \therefore \mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{E})$
$\ln \triangle \mathrm{ACE}: \therefore \mathrm{AC}=\mathrm{AE}$
$\because B C=D E$
$\therefore A B=A D$
(Second req.)
[b] $\because X$ is the midpoint of $\overline{A B}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{AXM})=90^{\circ}$
,$\because \mathrm{Y}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{AYM})=90^{\circ}$
From the quadrilateral AXMY :
$\therefore \mathrm{m}(\angle \mathrm{DME})=360^{\circ}-\left(90^{\circ}+90^{\circ}+60^{\circ}\right)=120^{\circ}$
(First req.)
, $\because \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{MX}=\mathrm{MY}$
, $\because M D=M E=r$
$\therefore \mathrm{XD}=\mathrm{YE}$
(Second req.)
3
[a] $\because \mathrm{AB}=\mathrm{AD}$
$\therefore \mathrm{m}(\angle \mathrm{ABD})=\mathrm{m}(\angle \mathrm{ADB})=35^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-2 \times 35^{\circ}=110^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})+\mathrm{m}(\angle \mathrm{C})=110^{\circ}+70^{\circ}=180^{\circ}$
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral.
(Q.E.D.)
[b] $\because \mathrm{m}(\angle \mathrm{BDC})=\mathrm{m}(\angle \mathrm{BAC})$
(two inscribed angles subtended by $\overparen{B C}$)
$\therefore \mathrm{m}(\angle \mathrm{BDC})=30^{\circ}$
, $\because \mathrm{m}(\overparen{B C})=2 \mathrm{~m}(\angle \mathrm{BAC})=60^{\circ}$
, $\overline{\mathrm{AB}}$ is a diameter in the circle M
$\therefore \mathrm{m}(\widehat{\mathrm{AB}})=180^{\circ}$
$\therefore m(\overparen{A C})=180^{\circ}-60^{\circ}=120^{\circ}$
,$\because \mathrm{D}$ is the midpoint of $\overparen{\mathrm{AC}}$
$\therefore \mathrm{m}(\overparen{\mathrm{AD}})=\frac{120^{\circ}}{2}=60^{\circ}$
(Second req.)
4
[a] $\because \overline{\mathrm{AD}}, \overline{\mathrm{AO}}$ are two tangent-segments to the circle
$\therefore \mathrm{AD}=\mathrm{AO}=5 \mathrm{~cm}$.
$, \because \overline{\mathrm{BD}}, \overline{\mathrm{BE}}$ are two tangent-segments to the circle
$\therefore B D=B E=4 \mathrm{~cm}$.
, $\because \overline{\mathrm{CE}}, \overline{\mathrm{CO}}$ are two tangent-segments to the circle
$\therefore \mathrm{CE}=\mathrm{CO}=3 \mathrm{~cm}$.
\therefore The perimeter of $\triangle \mathrm{ABC}=5+5+4+4+3+3$ $=24 \mathrm{~cm}$. (The req.)
[b] $\because \overrightarrow{\mathrm{AO}} / / \overline{\mathrm{DE}}, \overrightarrow{\mathrm{AB}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{AED})=\mathrm{m}(\angle \mathrm{EAO}) \quad$ (alternate angles)
, $\because \mathrm{m}(\angle \mathrm{C})$ (inscribed) $=\mathrm{m}(\angle \mathrm{BAO})$ (tangency)
$\therefore \mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{AED})$
\therefore DEBC is a cyclic quadrilateral.
(Q.E.D.)
[5
[a] $\because \angle \mathrm{ABE}$ is an exterior angle of the cyclic quadrilateral ABCD
$\therefore \mathrm{m}(\angle \mathrm{D})=\mathrm{m}(\angle \mathrm{ABE})=100^{\circ}$
In $\triangle \mathrm{ACD}$:
$\because \mathrm{m}(\angle \mathrm{ACD})=180^{\circ}-\left(100^{\circ}+40^{\circ}\right)=40^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ACD})=\mathrm{m}(\angle \mathrm{CAD})$
$\therefore C D=A D$
$\therefore \mathrm{m}(\overparen{C D})=\mathrm{m}(\widehat{\mathrm{AD}})$
[b] $\because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents
$\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=\frac{180^{\circ}-50^{\circ}}{2}=65^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BEC})$ (inscribed)
$=m(\angle \mathrm{ABC})$ (tangency) $=65^{\circ}$
(The req.)
22 Aswan
$1 \mathrm{c} \quad 2 \mathrm{~b} \quad 3 \mathrm{a} \quad 4 \mathrm{c} \quad 5 \mathrm{~b} \quad 6 \mathrm{~d}$

1

2
[a] $\because \overrightarrow{\mathrm{AD}}$ is a tangent
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AD}} \quad \therefore \mathrm{m}(\angle \mathrm{MDA})=90^{\circ}$
, $\because \mathrm{E}$ is the midpoint of $\overline{\mathrm{BC}}$
$\therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{BC}}$
$\therefore \mathrm{m}(\angle \mathrm{MEA})=90^{\circ}$
From the quadrilateral ADME :
$\therefore \mathrm{m}(\angle \mathrm{DME})=360^{\circ}-\left(50^{\circ}+90^{\circ}+90^{\circ}\right)$

$$
=130^{\circ}
$$

(The req.)
[b] In $\triangle \mathrm{ABC}: \because \mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{C})$
$\therefore \mathrm{AB}=\mathrm{AC}$
, $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$
$\because \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{MX}=\mathrm{MY}$
(Q.E.D.)

[3]

[a] $\because \overline{\mathrm{AB}}$ is a diameter
$\therefore \mathrm{m}(\angle \mathrm{ACB})=90^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{DCA})=90^{\circ}-60^{\circ}=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ABD})=\mathrm{m}(\angle \mathrm{ACD})=30^{\circ}$
(Two inscribed angles subtended by $\overparen{A D}$) (The req.)
[b] In $\triangle A B C: \because A B=A C$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=50^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BAC})=180^{\circ}-2 \times 50^{\circ}=80^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle \mathrm{BDC})$
and they are drawn on $\overline{B C}$ and on one side of it
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral.
(Q.E.D.)

4

[a] $m(\angle \mathrm{BMC})=2 \mathrm{~m}(\angle \mathrm{BAC})=2 \times 30^{\circ}=60^{\circ} \quad$ (1) (central and inscribed angles subtended by $\overparen{B C}$)
(First req.)
, $\because \mathrm{MB}=\mathrm{MC}=\mathrm{r}$
From (1) and (2) :
$\therefore \triangle \mathrm{MBC}$ is an equilateral triangle (Second req.)
[b] $\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-70^{\circ}=110^{\circ}$

Geometry

In $\triangle \mathrm{ABD}$:
$\therefore \mathrm{m}(\angle \mathrm{ABD})=180^{\circ}-\left(110^{\circ}+30^{\circ}\right)=40^{\circ}$
(The req.)

5

[a] $\because \mathrm{m}(\angle \mathrm{BDC})$ (inscribed)

$$
=\mathrm{m}(\angle \mathrm{ABC}) \text { (tangency })=70^{\circ}
$$

$, \because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents
$\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=70^{\circ}$
In $\triangle \mathrm{ABC}$:
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-\left(70^{\circ}+70^{\circ}\right)=40^{\circ} \quad$ (The req.)
[b] $\because \overline{\mathrm{AD}}, \overline{\mathrm{AF}}$ are two tangent-segments to the circle
$\therefore \mathrm{AD}=\mathrm{AF}=5 \mathrm{~cm}$.
$, \because \overline{\mathrm{BD}}, \overline{\mathrm{BE}}$ are two tangent-segments to the circle
$\therefore \mathrm{BD}=\mathrm{BF}=4 \mathrm{~cm}$.
$, \because \overline{\mathrm{CE}}, \overline{\mathrm{CF}}$ are two tangent-segments to the circle
$\therefore \mathrm{CE}=\mathrm{CF}=3 \mathrm{~cm}$.
\therefore The perimeter of $\triangle \mathrm{ABC}=5+5+4+4+3+3$ $=24 \mathrm{~cm}$. (The req.)

23 New Valley

1
$1 \mathrm{c} 4 \mathrm{~d} \quad 3 \mathrm{~b} \quad 4 \mathrm{~b} \quad 5 \mathrm{~d} \quad 6 \mathrm{~b}$

2
[a] $\because \mathrm{MD}=\mathrm{ME}$
$, \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{AB}=\mathrm{AC} \quad \therefore \mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{C})=65^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-2 \times 65^{\circ}=50^{\circ} \quad$ (The req.)
[b] $\because B C=C D=D B \quad \therefore \triangle B C D$ is equilateral
$\therefore \mathrm{m}(\angle \mathrm{C})=60^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{C})+\mathrm{m}(\angle \mathrm{A})=60^{\circ}+120^{\circ}=180^{\circ}$
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral
(Q.E.D.)

3
[a] $\mathrm{m}(\angle \mathrm{A})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{BMC})=\frac{1}{2} \times 80^{\circ}=40^{\circ}$
(First req.)
(inscribed and central angles subtended by $\overparen{B C}$)
, $\because M B=M C=r$
$\therefore \mathrm{m}(\angle \mathrm{MBC})=\mathrm{m}(\angle \mathrm{MCB})=\frac{180^{\circ}-80^{\circ}}{2}=50^{\circ}$
(Second req.)
[b] $\because \overrightarrow{\mathrm{XY}}$ is a tangent
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{XY}} \quad \therefore \mathrm{m}(\angle \mathrm{MXY})=90^{\circ}$
$\therefore \operatorname{In} \triangle M X Y:(X Y)^{2}=(M Y)^{2}-(M X)^{2}$

$$
=(13)^{2}-5^{2}=144
$$

$\therefore X Y=\sqrt{144}=12 \mathrm{~cm}$.
(The req.)

4

[a] $\because m(\angle B D C)$ (inscribed)
$=\mathrm{m}(\angle \mathrm{ABC})$ (tangency) $=70^{\circ}$
, $\because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents
$\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=70^{\circ}$
In $\triangle \mathrm{ABC}$:
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-\left(70^{\circ}+70^{\circ}\right)=40^{\circ}$ (The req.)
[b] $\because \overline{\mathrm{AD}}, \overline{\mathrm{AF}}$ are two tangent-segments to the circle
$\therefore \mathrm{AD}=\mathrm{AF}=5 \mathrm{~cm}$.
$, \because \overline{\mathrm{BD}}, \overline{\mathrm{BE}}$ are two tangent-segments to the circle
$\therefore \mathrm{BD}=\mathrm{BE}=2 \mathrm{~cm}$.
$, \because \overline{\mathrm{CE}}, \overline{\mathrm{CF}}$ are two tangent-segments to the circle
$\therefore \mathrm{CE}=\mathrm{CF}=3 \mathrm{~cm}$.
\therefore The perimeter of $\triangle \mathrm{ABC}=5+5+2+2+3+3$ $=20 \mathrm{~cm}$. (The req.)

5

[a] $m(\angle \mathrm{H})=\mathrm{m}(\angle \mathrm{C})=20^{\circ}$
(Two inscribed angles subtended by $\overparen{B D}$)
(First req.)
$\mathrm{m}(\overparen{\mathrm{BD}})=2 \mathrm{~m}(\angle \mathrm{C})=2 \times 20^{\circ}=40^{\circ}$
(Second req.)
$\begin{aligned} \therefore \mathrm{m}(\angle \mathrm{A}) & =\frac{1}{2}[\mathrm{~m}(\overparen{\mathrm{CH}})-\mathrm{m}(\widehat{\mathrm{BD}})] \\ & =\frac{1}{2}\left(140^{\circ}-40^{\circ}\right)=50^{\circ} \quad \text { (Third req.) }\end{aligned}$
[b] $\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{D})=\mathrm{m}(\angle \mathrm{ABH})=100^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ACD})=180^{\circ}-\left(100^{\circ}+40^{\circ}\right)=40^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CAD})=\mathrm{m}(\angle \mathrm{ACD})$
$\therefore \mathrm{m}(\overparen{\mathrm{CD}})=\mathrm{m}(\overparen{\mathrm{AD}})$

24 South Sinai

1

1 b	2 c	3 a	4 b	5 c

I

[a] $\because m(\angle \mathrm{BAC})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{BMC})$
(inscribed and central angles subtended by $\overparen{B C}$)
$\therefore \mathrm{m}(\angle \mathrm{BAC})=\frac{1}{2} \times 120^{\circ}=60^{\circ} \quad$ (The req.)
[b] $\because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents
$\therefore \mathrm{AB}=\mathrm{AC}$
\therefore In $\triangle \mathrm{ABC}$:
$\mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=\frac{180^{\circ}-50^{\circ}}{2}$

$$
=65^{\circ} \quad \text { (The req.) }
$$

3

[a] $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{MXA})=90^{\circ}$
,$\because \mathrm{Y}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$

$$
\therefore \mathrm{m}(\angle \mathrm{MYA})=90^{\circ}
$$

From the quadrilateral AXMY :
$\therefore \mathrm{m}(\angle \mathrm{BAC})=360^{\circ}-\left(90^{\circ}+90^{\circ}+120^{\circ}\right)=60^{\circ}$
(First req.)
, $\because \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{MX}=\mathrm{MY}$
, $\because M D=M H=r \quad \therefore D X=H Y$ (Second req.)
[b] $\ln \triangle \mathrm{ABC}$:
$\because A B=A C$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-2 \times 30^{\circ}=120^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})+\mathrm{m}(\angle \mathrm{D})=120^{\circ}+60^{\circ}=180^{\circ}$
$\therefore \mathrm{ABDC}$ is a cyclic quadrilateral.
(Q.E.D.)

4

[a] $\because \mathrm{m}(\angle \mathrm{A})=\frac{1}{2}[\mathrm{~m}(\overparen{\mathrm{CH}})-\mathrm{m}(\widehat{\mathrm{BD}})]$
$\therefore 30^{\circ}=\frac{1}{2}\left[80^{\circ}-\mathrm{m}(\overparen{\mathrm{BD}})\right]$
$\therefore 60^{\circ}=80^{\circ}-\mathrm{m}(\widehat{\mathrm{BD}})$
$\therefore \mathrm{m}(\overparen{\mathrm{BD}})=80^{\circ}-60^{\circ}=20^{\circ}$
(The req.)
[b] In $\triangle A C D: \because A C=C D$
$\therefore \mathrm{m}(\angle \mathrm{CAD})=\mathrm{m}(\angle \mathrm{ADC})=50^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CBD})=\mathrm{m}(\angle \mathrm{CAD})=50^{\circ}$
(two inscribed angles subtended by $\overparen{C D}$)
(The req.)
5
[a] $\because \overline{\mathrm{AB}}$ is a diameter $\therefore \mathrm{m}(\angle \mathrm{BCA})=90^{\circ}$
,$\because \overrightarrow{\mathrm{CD}} / / \overrightarrow{\mathrm{AB}} \quad \therefore \mathrm{m}(\overparen{\mathrm{AC}})=\mathrm{m}(\overparen{\mathrm{BC}})$
$\therefore \mathrm{AC}=\mathrm{BC}$
$\therefore \ln \triangle \mathrm{ABC}$:
$m(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{BAC})=\frac{180^{\circ}-90^{\circ}}{2}=45^{\circ}$
(The req.)
[b] $\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore m(\angle A)=m(\angle B C H)=60^{\circ}$
, $\because \mathrm{AB}=\mathrm{AD}$
$\therefore \triangle \mathrm{ABD}$ is equilateral.
(Q.E.D.)

25 North Sinai

$1 \mathrm{~b} \quad 2 \mathrm{a} \quad 3 \mathrm{~d} \quad 4 \mathrm{c} \quad 5 \mathrm{~b} \quad 6 \mathrm{~d}$
ㄹ
[a] $\ln \triangle \mathrm{ABC}$:
$\because \mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{C}) \quad \therefore \mathrm{AB}=\mathrm{AC}$
,$\because \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$
,$\because \mathrm{E}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}$ $\therefore \mathrm{MD}=\mathrm{ME}$ (Q.E.D.)
[b] $\because M F=M X=r=6 \mathrm{~cm}$.
$\therefore M Y=6+4=10 \mathrm{~cm}$.
In \triangle MAXY
$\because(M Y)^{2}=(10)^{2}=100$
,$(M X)^{2}+(X Y)^{2}=6^{2}+8^{2}=100$
$\therefore(M Y)^{2}=(M X)^{2}+(X Y)^{2} \quad \therefore \overline{M X} \perp \overrightarrow{X Y}$
$\therefore \overrightarrow{X Y}$ is a tangent to the circle at $\mathrm{X} \quad$ (Q.E.D.)

3

$[\mathrm{a}] \because \mathrm{m}(\angle \mathrm{DEB})=\frac{1}{2}[\mathrm{~m}(\overparen{\mathrm{AC}})+\mathrm{m}(\overparen{\mathrm{BD}})]$
$\therefore 110^{\circ}=\frac{1}{2}\left[100^{\circ}+\mathrm{m}(\overparen{\mathrm{BD}})\right]$
$\therefore 220^{\circ}=100^{\circ}+\mathrm{m}(\overparen{\mathrm{BD}})$
$\therefore \mathrm{m}(\overparen{\mathrm{BD}})=220^{\circ}-100^{\circ}=120^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{DCB})=\frac{1}{2} \mathrm{~m}(\overparen{\mathrm{BD}})=\frac{1}{2} \times 120^{\circ}=60^{\circ}$
(The req.)
[b] $\because A B C D$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-140^{\circ}=40^{\circ} \quad$ (First req.)
,$\because \overline{\mathrm{AB}}$ is a diameter
$\therefore \mathrm{m}(\angle \mathrm{ADB})=90^{\circ}$

In $\triangle \mathrm{BCD}: \because \mathrm{CD}=\mathrm{CB}$
$\therefore \mathrm{m}(\angle \mathrm{CDB})=\mathrm{m}(\angle \mathrm{CBD})=\frac{180^{\circ}-140^{\circ}}{2}=20^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ADC})=90^{\circ}+20^{\circ}=110^{\circ} \quad$ (Second req.)

4

[a] $\because \overrightarrow{\mathrm{YB}}$ is a tangent, $\overline{\mathrm{AB}}$ is a diameter
$\therefore \overrightarrow{\mathrm{AB}} \perp \overrightarrow{\mathrm{YB}}$

$$
\therefore \mathrm{m}(\angle \mathrm{ABY})=90^{\circ}
$$

,$\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{MXA})=90^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ABY})=\mathrm{m}(\angle \mathrm{AXY})=90^{\circ}$
and they are drawn on $\overline{\mathrm{AY}}$ and on one side of it
$\therefore \mathrm{AXBY}$ is a cyclic quadrilateral.
(Q.E.D.)
[b] The measure of the arc $=2 \times 45^{\circ}=90^{\circ}$
The length of the arc $=\frac{90^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times 7=11 \mathrm{~cm}$. (The req.)

5

[a] \because BCDE is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{CBE})=180^{\circ}-120^{\circ}=60^{\circ}$
$, \because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments
$\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore \ln \triangle A B C$:
$\mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=\frac{180^{\circ}-60^{\circ}}{2}=60^{\circ}$
$\therefore \mathrm{m}$ ($\angle \mathrm{CEB}$) (inscribed)

$$
=m(\angle A B C)(\text { tangency })=60^{\circ}
$$

in $\triangle \mathrm{EBC}: \because \mathrm{m}(\angle \mathrm{CBE})=\mathrm{m}(\angle \mathrm{CEB})=60^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BCE})=180^{\circ}-2 \times 60^{\circ}=60^{\circ}$
$\therefore \triangle \mathrm{BCE}$ is an equilateral triangle.
(Q.E.D.)
[b] In $\triangle \mathrm{ABC}: \because \mathrm{m}(\angle \mathrm{BAC})=90^{\circ}$
, $\mathrm{AC}=\frac{1}{2} \mathrm{BC} \quad \therefore \mathrm{m}(\angle \mathrm{B})=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{C})=180^{\circ}-\left(90^{\circ}+30^{\circ}\right)=60^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{BAD})=60^{\circ}$
$\therefore \overrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the vertices of $\triangle \mathrm{ABC}$
(Q.E.D.)

Red Sea

1 a
$2 \mathrm{~d} \quad 3 \mathrm{a}$
(4) a
5 b
6 c
[
[a] $\because \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{ADM})=90^{\circ}$
, $\because \mathrm{E}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}} \quad \therefore \mathrm{m}(\angle \mathrm{AEM})=90^{\circ}$
\therefore From the quadrilateral ADME :
$\therefore \mathrm{m}(\angle \mathrm{DME})=360^{\circ}-\left(90^{\circ}+90^{\circ}+70^{\circ}\right)=110^{\circ}$
(The req.)
[b] $\mathrm{m}(\angle \mathrm{AEC})=\frac{1}{2}[\mathrm{~m}(\widehat{\mathrm{AC}})+\mathrm{m}(\widehat{\mathrm{BD}})]$

$$
=\frac{1}{2}\left(50^{\circ}+100^{\circ}\right)=75^{\circ} \quad \text { (The req. }
$$

3

[a] In $\triangle \mathrm{ABC}: \because \mathrm{m}(\angle \mathrm{B})=180^{\circ}-\left(50^{\circ}+35^{\circ}\right)=95^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{B})+\mathrm{m}(\angle \mathrm{D})=95^{\circ}+85^{\circ}=180^{\circ}$
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral.
(Q.E.D.)
[b] $\ln \triangle M B C: ~ \because M B=M C=r$
$\therefore \mathrm{m}(\angle \mathrm{MBC})=\mathrm{m}(\angle \mathrm{MCB})=40^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BMC})=180^{\circ}-2 \times 40^{\circ}=100^{\circ}$
,$\because m(\angle A)=\frac{1}{2} m(\angle B M C)$
(inscribed and central angles subtended by $\overparen{B C}$)
$\therefore \mathrm{m}(\angle \mathrm{A})=\frac{1}{2} \times 100^{\circ}=50^{\circ}$
(The req.)

4

[a] $\because \overline{\mathrm{AD}}, \overline{\mathrm{AF}}$ are two tangent-segments to the circle $\therefore \mathrm{AD}=\mathrm{AF}=3 \mathrm{~cm}$.
$, \because \overline{\mathrm{BD}}, \overline{\mathrm{BE}}$ are two tangent-segments to the circle
$\therefore \mathrm{BD}=\mathrm{BE}=5 \mathrm{~cm}$.
$, \because \overline{\mathrm{CE}}, \overline{\mathrm{CF}}$ are two tangent-segments to the circle
$\therefore C E=C F=4 \mathrm{~cm}$.
\therefore The perimeter of $\triangle \mathrm{ACB}=5+5+4+4+3+3$
$=24 \mathrm{~cm}$. (The req.)
[b] $\because M D=M E$
, $\overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{AB}=\mathrm{AC}$
\therefore In $\triangle \mathrm{ABC}$:
$\mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{C})=70^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-2 \times 70^{\circ}=40^{\circ}$
(The req.)
5
[a] $\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{D})=\mathrm{m}(\angle \mathrm{ABE})=100^{\circ}$
$\begin{aligned} \ln \triangle \mathrm{ACD}: \therefore \mathrm{m}(\angle \mathrm{ACD}) & =180^{\circ}-\left(100^{\circ}+40^{\circ}\right) \\ & =40^{\circ}\end{aligned}$
$\therefore \mathrm{m}(\angle \mathrm{CAD})=\mathrm{m}(\angle \mathrm{ACD})=40^{\circ}$
$\therefore \mathrm{m}(\overparen{\mathrm{CD}})=\mathrm{m}(\widehat{\mathrm{AD}})$
(Q.E.D.)
[b] $\because \overrightarrow{\mathrm{AX}}$ is a common tangent for two circles
$\therefore \mathrm{m}(\angle \mathrm{BDA})$ (inscribed) $=m(\angle B A X)$ (tangency)
, $\mathrm{m}(\angle \mathrm{CEA})$ (inscribed)
$=\mathrm{m}(\angle \mathrm{CAX})$ (tangency)
$\therefore \mathrm{m}(\angle \mathrm{BDA})=\mathrm{m}(\angle \mathrm{CEA})$

and they are corresponding angles
$\therefore \overline{\mathrm{BD}} / / \overline{\mathrm{CE}}$

27 Matrouh

	1 c	2 b	3 d	4 c

2
[a] $\because \overline{\mathrm{AB}}$ is a tangent-segment
$\therefore \overline{\mathrm{MA}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{MAB})=90^{\circ}$
In $\triangle M A B$:
$\therefore \mathrm{m}(\angle \mathrm{AMB})=180^{\circ}-\left(90^{\circ}+30^{\circ}\right)=60^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ADC})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{AMC})$
(inscribed and central angles subtended by $\overparen{A C}$)
$\therefore \mathrm{m}(\angle \mathrm{ADB})=\frac{1}{2} \times 60^{\circ}=30^{\circ} \quad$ (The req.)
[b] In $\triangle A B D: \because A B=A D$
$\therefore \mathrm{m}(\angle \mathrm{ABD})=\mathrm{m}(\angle \mathrm{ADB})=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-2 \times 30^{\circ}=120^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})+\mathrm{m}(\angle \mathrm{C})=120^{\circ}+60^{\circ}=180^{\circ}$
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral.
(Q.E.D.)

3
[a] $\because \angle \mathrm{CBE}$ is an exterior angle of the cyclic quadrilateral ABCD
$\therefore \mathrm{m}(\angle \mathrm{ADC})=\mathrm{m}(\angle \mathrm{CBE})=85^{\circ}$
,$\because \mathrm{m}(\angle \mathrm{ADB})=\frac{1}{2} \mathrm{~m}(\widehat{\mathrm{AB}})=\frac{1}{2} \times 110^{\circ}=55^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BDC})=85^{\circ}-55^{\circ}=30^{\circ}$
(The req.)
[b] $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$
$\therefore \mathrm{m}(\angle \mathrm{AXM})=90^{\circ}$
, $\because \mathrm{Y}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}} \quad \therefore \mathrm{m}(\angle \mathrm{AYM})=90^{\circ}$
From the quadrilateral AXMY :
$\therefore \mathrm{m}(\angle \mathrm{DME})=360^{\circ}-\left(90^{\circ}+90^{\circ}+70^{\circ}\right)=110^{\circ}$
(First req.)
,$\because \mathrm{AB}=\mathrm{AC} \quad \therefore \mathrm{MX}=\mathrm{MY}$
$\because M D=M E=r$

$$
\therefore \mathrm{XD}=\mathrm{YE} \text { (Second req.) }
$$

4

[a] $\because \overrightarrow{\mathrm{BD}}$ is a tangent
$\therefore \overline{\mathrm{MB}} \perp \overrightarrow{\mathrm{BD}} \quad \therefore \mathrm{m}(\angle \mathrm{MBD})=90^{\circ}$
,$\because M A=M B=r$
\therefore In $\triangle \mathrm{MAB}$:
$\mathrm{m}(\angle \mathrm{MBA})=\mathrm{m}(\angle \mathrm{MAB})=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ABD})=90^{\circ}-30^{\circ}=60^{\circ} \quad$ (The req.)
[b] $\because A B=A C$
$\therefore \mathrm{m}(\overparen{\mathrm{AB}})=\mathrm{m}(\overparen{\mathrm{AC}})$
$\therefore \mathrm{m}(\angle \mathrm{AEB})=\mathrm{m}(\angle \mathrm{AEC})$

5

[a] 1 perpendicular, bisects
(2) equal
[b] $\because \overrightarrow{\mathrm{XA}}, \overrightarrow{\mathrm{XB}}$ are two tangents to the circle
$\therefore \mathrm{XA}=\mathrm{XB}$
$\therefore \ln \triangle \mathrm{ABX}$
$\mathrm{m}(\angle \mathrm{XAB})=\mathrm{m}(\angle \mathrm{XBA})=\frac{180^{\circ}-70^{\circ}}{2}=55^{\circ} \quad$ (1)
,$\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{BAD})+\mathrm{m}(\angle \mathrm{DCB})=180^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BAD})=180^{\circ}-125^{\circ}=55^{\circ}$
From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{XAB})=\mathrm{m}(\angle \mathrm{BAD})=55^{\circ}$
$\therefore \overrightarrow{\mathrm{AB}}$ bisects $\angle \mathrm{DAX}$
(Q.E.D.)

\mathcal{L} Answer the following questions :

1 Choose the correct answer from those given :

1 The slope of the straight line $3 x+2 y=1$ is
(a) $\frac{2}{3}$
(b) $-\frac{3}{2}$
(c) $-\frac{2}{3}$
(d) $\frac{3}{2}$

2 M and N are two intersecting circles, their radii lengths are 3 cm . and 5 cm . , then $\mathrm{MN} \in$ \qquad
(a) $] 8, \infty[$
(b) $] 3,5[$
(c) $] 0,2[$
(d) $] 2,8[$

3 The measurement of any angle of the regular hexagon is \qquad
(a) 90°
(b) 108°
(c) 120°
(d) 135°

4 ABCD is a cyclic quadrilateral, $\mathrm{m}(\angle \mathrm{A})=70^{\circ}$, then $\mathrm{m}(\angle \mathrm{C})$ equals
(a) 25°
(b) 20°
(c) 110°
(d) 100°

5 In $\triangle \mathrm{ABC}$, if $(\mathrm{AB})^{2}=(\mathrm{AC})^{2}+(\mathrm{BC})^{2}$, then $\angle \mathrm{B}$ is
(a) acute.
(b) obtuse.
(c) right.
(d) reflex.

6 The measure of the inscribed angle drawn in a semicircle equals
(a) 130°
(b) 90°
(c) 50°
(d) 180°

2 [a] In the opposite figure :

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ are two chords equal in length in the circle M
$, \overrightarrow{\mathrm{MX}} \perp \overline{\mathrm{AB}}, \overrightarrow{\mathrm{MY}} \perp \overline{\mathrm{CD}}$
Prove that : $\mathrm{HX}=\mathrm{FY}$
[b] In the opposite figure :
$\mathrm{H} \in \overrightarrow{\mathrm{AB}}, \mathrm{m}(\widehat{\mathrm{AB}})=110^{\circ}$
, $\mathrm{m}(\angle \mathrm{CDB})=30^{\circ}$
Find : $m(\angle \mathrm{HBC})$

3 [a] In the opposite figure :
ABC is a triangle drawn in the circle M
, $\mathrm{m}(\angle \mathrm{MBC})=25^{\circ}$
Find : $m(\angle B A C)$

[b] In the opposite figure :
$\mathrm{AB}=\mathrm{AC}, \mathrm{m}(\angle \mathrm{D})=100^{\circ}$
, $\mathrm{m}(\angle \mathrm{ABC})=50^{\circ}$
Prove that : ABDC is a cyclic quadrilateral.

4 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle M
$, \mathrm{D} \in \overrightarrow{\mathrm{AB}}, \mathrm{D} \notin \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{DE}} \perp \overrightarrow{\mathrm{AB}}$
, $\mathrm{C} \in \overparen{\mathrm{AB}}, \overrightarrow{\mathrm{CB}} \cap \overrightarrow{\mathrm{DE}}=\{\mathrm{E}\}$
Prove that : ACDE is a cyclic quadrilateral

[b] In the opposite figure :

Two concentric circles of centre M
, $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords in the greater circle and tangents to the smaller circle at X and Y respectively.
Prove that : $\mathrm{AB}=\mathrm{AC}$

5 [a] In the opposite figure :
M and N are two intersecting circles at A and B
, $\overleftrightarrow{\mathrm{AD}}$ is drawn to intersect the circle M at E and the circle N at $D, \overleftrightarrow{A B}$ is drawn to intersect the circle M at
 F and the circle N at $\mathrm{C}, \mathrm{m}(\angle \mathrm{BCD})=70^{\circ}$
1 Find : m ($\angle \mathrm{EFB}$)
2 Prove that : $\overline{\mathrm{CD}} / / \overline{\mathrm{EF}}$

[b] In the opposite figure :

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are tangent-segments to the circle at B and C $, \mathrm{m}(\angle \mathrm{BAC})=60^{\circ}, \mathrm{m}(\angle \mathrm{CDE})=120^{\circ}$
Prove that : $1 \triangle \mathrm{BCE}$ is an equilateral triangle.

$$
2 \overline{\mathrm{AC}} / / \overline{\mathrm{BE}}
$$

Model Exam

12 Answer the following questions:

1 Choose the correct answer from those given :

$1 \angle \mathrm{~A}$ and $\angle \mathrm{B}$ are two complementary angles, $\angle \mathrm{B}$ and $\angle \mathrm{C}$ are two supplementary angles , $\mathrm{m}(\angle \mathrm{A})=30^{\circ}$, then $\mathrm{m}(\angle \mathrm{C})=$ \qquad \circ
(a) 30
(b) 60
(c) 90
(d) 120

2 If the surface of the circle $M \cap$ the surface of the circle $N=\{A\}$ and the radius length of one of them equals 3 cm . and $\mathrm{MN}=8 \mathrm{~cm}$., then the radius length of the other circle equals \qquad cm .
(a) 5
(b) 6
(c) 11
(d) 16

3 In the opposite figure :
$\overleftrightarrow{\mathrm{AB}} \cap$ the surface of the circle $\mathrm{M}=$
(a) $\{\mathrm{C}, \mathrm{D}\}$
(b) $\overline{\mathrm{CD}}$
(c) $\overleftrightarrow{C D}$
(d) \varnothing

4 A circle can be drawn passing through the vertices of a
(a) rhombus.
(b) parallelogram.
(c) trapezium.
(d) rectangle.

5 The rhombus whose two diagonal lengths are 12 cm . and 16 cm ., then its side length equals cm .
(a) 6
(b) 8
(c) 10
(d) 20

6 In the opposite figure :

If the side length of the square $=10 \mathrm{~cm}$.
, then the surface area of the circle $=$ cm^{2}
(a) 100π
(b) 25π
(c) 50π
(d) 40π

2 [a] In the opposite figure :

$\overline{\mathrm{AB}}$ is a chord in the circle M
$, \overline{\mathrm{MC}} \perp \overline{\mathrm{AB}}, \mathrm{m}(\angle \mathrm{ADB})=70^{\circ}$
Find : m ($\angle \mathrm{AMC})$

[b] In the opposite figure :
M and N are two congruent circles
$, \mathrm{AB}=\mathrm{CD}, \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$ and $\overline{\mathrm{NY}} \perp \overline{\mathrm{CD}}$
Prove that : The figure MXYN is a rectangle.

3 [a] In the opposite figure :

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords in the circle M, D is the midpoint of $\overline{\mathrm{AB}}$
, E is the midpoint of $\overline{\mathrm{AC}}$ and $\mathrm{m}(\angle \mathrm{BAC})=50^{\circ}$

Find : m ($\angle \mathrm{DME})$
[b] In the opposite figure :
$\mathrm{AB}=\mathrm{BC}$
, $\mathrm{m}(\angle \mathrm{ACB})=55^{\circ}$
and $\mathrm{m}(\angle \mathrm{BDC})=55^{\circ}$
Prove that : The figure ABCD is a cyclic quadrilateral.

4 [a] In the opposite figure :
$\overline{A B}$ is a chord in the circle M
, $\overrightarrow{\mathrm{AC}}$ bisects $\angle \mathrm{BAM}$ and intersects the circle M at C
If D is the midpoint of $\overline{\mathrm{AB}}$
, prove that : $\overline{\mathrm{DM}} \perp \overline{\mathrm{CM}}$

[b] $\overline{\mathrm{AB}}$ is a diameter in the circle $\mathrm{M}, \overleftrightarrow{\mathrm{AC}}$ and $\overleftrightarrow{\mathrm{BD}}$ are two tangents to the circle $\mathrm{M}, \overrightarrow{\mathrm{CM}}$ intersects the circle M at X and Y respectively and intersects $\overleftrightarrow{\mathrm{BD}}$ at E Prove that : $\mathrm{CX}=\mathrm{YE}$

5 [a] In the opposite figure :
$\overrightarrow{\mathrm{XA}}$ and $\overrightarrow{\mathrm{XB}}$ are two tangents to the circle at A and B
, $\mathrm{m}(\angle \mathrm{AXB})=50^{\circ}, \mathrm{m}(\angle \mathrm{DCB})=115^{\circ}$
Prove that : $1 \overrightarrow{\mathrm{AB}}$ bisects $\angle \mathrm{DAX}$

$$
\text { (2 } \mathrm{BD}=\mathrm{BA}
$$

[b] In the opposite figure :

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ are two equal chords in length in the circle , $\overline{\mathrm{AB}} \cap \overline{\mathrm{CD}}=\{\mathrm{E}\}$

Prove that : The triangle ACE is an isosceles triangle.

Model Exam

12 Answer the following questions :

1 Choose the correct answer from those given :

1 The measure of the inscribed angle is \qquad the measure of the central angle subtended by the same arc.
(a) half
(b) twice
(c) quarter
(d) third

2 The length of the side opposite to the angle of measure 30° in the right-angled triangle equals \qquad the length of the hypotenuse.
(a) $\frac{1}{2}$
(b) $\frac{\sqrt{3}}{2}$
(c) $\sqrt{2}$
(d) 2

3 Two distant circles M and N with radii lengths 6 cm . and 8 cm . respectively , then MN 14 cm .
(a) $<$
(b) $>$
(c) $=$
(d) \leq

4 The angle of measure 40° is the complemented angle of the angle of measure \qquad -
(a) 320
(b) 140
(c) 60
(d) 50

5 The area of the rhombus with diagonal lengths $6 \mathrm{~cm} ., 8 \mathrm{~cm}$. is \qquad cm^{2}
(a) 2
(b) 14
(c) 24
(d) 48

6 In the cyclic quadrilateral ABCD , if $\mathrm{m}(\angle \mathrm{A})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{C})$, then $\mathrm{m}(\angle \mathrm{A})=$ \qquad
(a) 20
(b) 30
(c) 60
(d) 120

2 [a] In the opposite figure :

M and N are two intersecting circles at A and B
, $\mathrm{C} \in \overrightarrow{\mathrm{AB}}, \overline{\mathrm{AC}} \cap \overline{\mathrm{MN}}=\{\mathrm{E}\}$
, $\mathrm{D} \in$ the circle $\mathrm{N}, \mathrm{m}(\angle \mathrm{DNM})=140^{\circ}$
and $\mathrm{m}(\angle \mathrm{C})=40^{\circ}$
Prove that : $\overrightarrow{\mathrm{CD}}$ is a tangent to the circle N at D

[b] In the opposite figure :

$A B C D$ is a rectangle inscribed in a circle
, the chord $\overline{\mathrm{CE}}$ is drawn
where $\mathrm{CE}=\mathrm{CD}$
Prove that : $\mathrm{AE}=\mathrm{BC}$

3 [a] State two cases of the cyclic quadrilateral.
[b] In the opposite figure :
$\overline{\mathrm{AB}} \cap \overline{\mathrm{CD}}=\{\mathrm{F}\}, \overrightarrow{\mathrm{AC}} \cap \overrightarrow{\mathrm{DB}}=\{\mathrm{E}\}$
, $\mathrm{m}(\angle \mathrm{A})=30^{\circ}$
, $\mathrm{m}(\angle \mathrm{E})=50^{\circ}$
Find : $1 \mathrm{~m}(\widehat{\mathrm{AD}})$
$2 \mathrm{~m}(\angle \mathrm{AFD})$

4 [a] In the opposite figure :
$\overleftrightarrow{\mathrm{CD}}$ is a tangent to the circle at C
$, \overleftrightarrow{\mathrm{CD}} / / \overline{\mathrm{AB}}, \mathrm{m}(\angle \mathrm{AMB})=120^{\circ}$
Prove that : The triangle CAB is an equilateral triangle.

[b] In the opposite figure :
ABCD is a parallelogram.
Prove that : HDCE is a cyclic quadrilateral.

5 [a] In the opposite figure :
$\mathrm{AC}=\mathrm{BC}, \mathrm{m}(\angle \mathrm{ABC})=65^{\circ}$
, $\mathrm{m}(\angle \mathrm{DAB})=130^{\circ}$
Prove that : $\overrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through
 the vertices of the triangle $A B C$

[b] In the opposite figure :

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ are two chords in the circle M
, $\overrightarrow{\mathrm{MX}} \perp \overrightarrow{\mathrm{AB}}$ and intersects the circle at F
, $\overrightarrow{\mathrm{MY}} \perp \overline{\mathrm{CD}}$ and intersects the circle at $\mathrm{E}, \mathrm{FX}=\mathrm{EY}$
Prove that: $1 \mathrm{AB}=\mathrm{CD}$
(2) $\mathrm{AF}=\mathrm{CE}$

Answers of model

1
1 b
4 c
2 d
5 a
3 c
6 b
[a] $\because \mathrm{AB}=\mathrm{CD}, \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$
, $\overline{\mathrm{MY}} \perp \overline{\mathrm{CD}}$
$\therefore \mathrm{MX}=\mathrm{MY}$
, $\because \mathrm{MH}=\mathrm{MF}=\mathrm{r}$

$\therefore \mathrm{HX}=\mathrm{FY}$
(Q.E.D.)
[b] $\because \mathrm{m}(\angle \mathrm{ADB})=\frac{1}{2} \mathrm{~m}(\overparen{\mathrm{AB}})$

$$
\begin{aligned}
& =\frac{1}{2} \times 110^{\circ} \\
& =55^{\circ}
\end{aligned}
$$

, $\because \mathrm{ABCD}$ is a cyclic quadrilateral. 110°
$\therefore \mathrm{m}(\angle \mathrm{HBC})=\mathrm{m}(\angle \mathrm{CDB})+\mathrm{m}(\angle \mathrm{ADB})$

$$
=30^{\circ}+55^{\circ}=85^{\circ}
$$

(The req.)
[a] In $\triangle \mathrm{BMC}$:
$\because \mathrm{MB}=\mathrm{MC}=\mathrm{r}$
$\therefore \mathrm{m}(\angle \mathrm{MCB})$

$$
=\mathrm{m}(\angle \mathrm{MBC})=25^{\circ}
$$

$\therefore \mathrm{m}(\angle \mathrm{BMC})=180^{\circ}-\left(25^{\circ}+25^{\circ}\right)=130^{\circ}$
, $\because \mathrm{m}(\angle \mathrm{BAC})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{BMC})$
(inscribed and central angles subtended by $\overparen{B C}$)
$\therefore \mathrm{m}(\angle \mathrm{BAC})=\frac{1}{2} \times 130^{\circ}=65^{\circ}$
(The req.)
[b] In $\triangle \mathrm{ABC}$:
$\because \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{m}(\angle \mathrm{ACB})=\mathrm{m}(\angle \mathrm{ABC})$

$$
=50^{\circ}
$$

$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-\left(50^{\circ}+50^{\circ}\right)=80^{\circ}$

,$\because \mathrm{m}(\angle \mathrm{A})+\mathrm{m}(\angle \mathrm{D})=80^{\circ}+100^{\circ}=180^{\circ}$
$\therefore \mathrm{ABDC}$ is a cyclic quadrilateral.
(Q.E.D.)

4

[a] $\because \overline{\mathrm{AB}}$ is a diameter of the circle.
$\therefore \mathrm{m}(\angle \mathrm{ACB})=90^{\circ}$

$\therefore \mathrm{m}(\angle \mathrm{ACE})=\mathrm{m}(\angle \mathrm{ADE})$
and they are drawn on $\overline{\mathrm{AE}}$ and on one side of it
$\therefore \mathrm{ACDE}$ is a cyclic quadrilateral.
(Q.E.D.)

[b] Construction :

Draw $\overline{\mathrm{MX}}, \overline{\mathrm{MY}}$

Proof :

$\because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangents to the smaller circle at X, Y
 respectively
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
,$\because \mathrm{MX}=\mathrm{MY}=\mathrm{r} \quad$ (radius length of the smaller circle)
$\therefore \mathrm{AB}=\mathrm{AC}$
(Q.E.D.)

5
[a] $\because \mathrm{ABCD}$ is a cyclic
quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{BAD})$

$$
=180^{\circ}-70^{\circ}=110^{\circ}
$$

, $\because \mathrm{ABFE}$ is a cyclic quadrilateral and $\angle \mathrm{BAD}$ is exterior of it.
$\therefore \mathrm{m}(\angle \mathrm{EFB})=\mathrm{m}(\angle \mathrm{BAD})=110^{\circ} \quad$ (First req.)
$\therefore \mathrm{m}(\angle \mathrm{EFB})+\mathrm{m}(\angle \mathrm{BCD})=110^{\circ}+70^{\circ}=180^{\circ}$
and they are interior angles in the same side of $\overleftrightarrow{\mathrm{FC}}$
$\therefore \overline{\mathrm{CD}} / / \overline{\mathrm{EF}}$
(Second req.)
[b] $\because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$
are tangent-segments to the circle
$\therefore \mathrm{AB}=\mathrm{AC}$

$\therefore \mathrm{m}(\angle \mathrm{ACB})=\frac{180^{\circ}-60^{\circ}}{2}=60^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BEC})$ (inscribed)
$=\mathrm{m}(\angle \mathrm{ACB})$ (tangency) $=60^{\circ}$
,\because EBCD is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{EBC})=180^{\circ}-120^{\circ}=60^{\circ}$
\therefore From (2), (3) in \triangle EBC :
$\therefore \mathrm{m}(\angle \mathrm{BCE})=60^{\circ}$
$\therefore \triangle \mathrm{BCE}$ is equilateral.
(Q.E.D. 1)

From (1), (3) : $\therefore \mathrm{m}(\angle \mathrm{ACB})=\mathrm{m}(\angle \mathrm{EBC})$ and they are alternate angles
$\therefore \overline{\mathrm{AC}} / / \overline{\mathrm{BE}}$
(Q.E.D. 2)

Answers of model

1
1 d
2 a
(3) b
4 d
5 c
6 b

2
[a] $\because \mathrm{m}(\angle \mathrm{AMB})=2 \mathrm{~m}(\angle \mathrm{ADB})$

$$
=2 \times 70^{\circ}=140^{\circ}
$$

(central and inscribed
angles subtended by $\overparen{A B}$)
In $\triangle \mathrm{ABM}: \because \overline{\mathrm{MC}} \perp \overline{\mathrm{AB}}$

, $\mathrm{MA}=\mathrm{MB}=\mathrm{r}$
$\therefore \overrightarrow{\mathrm{MC}}$ bisects $\angle \mathrm{AMB}$
$\therefore \mathrm{m}(\angle \mathrm{AMC})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{AMB})=\frac{1}{2} \times 140^{\circ}=70^{\circ}$ (The req.)
[b] $\because \mathrm{M}, \mathrm{N}$ are two congruent circles
, $\mathrm{AB}=\mathrm{CD}$
, $\overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$
, $\overline{\mathrm{NY}} \perp \overline{\mathrm{CD}}$

$\therefore M X=N Y, \overline{M X} / / \overline{N Y}$
$\therefore \mathrm{MXYN}$ is a rectangle.
(Q.E.D.)
[a] $\because \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$
$\therefore \mathrm{m}(\angle \mathrm{ADM})=90^{\circ}$
, $\because \mathrm{E}$ is the midpoint of $\overline{\mathrm{AC}}$

$\therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{AEM})=90^{\circ}$
From the quadrilateral ADME :
$\therefore \mathrm{m}(\angle \mathrm{DME})=360^{\circ}-\left(90^{\circ}+90^{\circ}+50^{\circ}\right)=130^{\circ}$
(The req.)
[b] In $\triangle \mathrm{ABC}$:
$\because \mathrm{AB}=\mathrm{BC}$
$\therefore \mathrm{m}(\angle \mathrm{BAC})$

$$
=\mathrm{m}(\angle \mathrm{ACB})=55^{\circ}
$$

, $\because \mathrm{m}(\angle \mathrm{BDC})=\mathrm{m}(\angle \mathrm{BAC})=55^{\circ}$
and they are drawn on $\overline{\mathrm{BC}}$ and on one side of it
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral.
(Q.E.D.)
[a] In \triangle AMC :
$\because A M=M C=r$
$\therefore \mathrm{m}(\angle \mathrm{MAC})=\mathrm{m}(\angle \mathrm{ACM})$
,$\because \mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle \mathrm{MAC})$
$\therefore \mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle \mathrm{ACM})$

and they are alternate angles.
$\therefore \overline{\mathrm{AB}} / / \overline{\mathrm{CM}}$
,$\because \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$,$\because \overline{\mathrm{AB}} / / \overline{\mathrm{CM}}$
$\therefore \overline{\mathrm{DM}} \perp \overline{\mathrm{CM}}$
(Q.E.D.)
[b] $\because \overleftrightarrow{\mathrm{AC}}$ is a tangent to the circle M at A
$\therefore \overrightarrow{\mathrm{MA}} \perp \overleftrightarrow{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{CAM})=90^{\circ}$
, $\because \overleftrightarrow{\mathrm{BD}}$ is a tangent to the circle M at B

$\therefore \overline{\mathrm{MB}} \perp \overleftrightarrow{\mathrm{BD}}$
$\therefore \mathrm{m}(\angle \mathrm{EBM})=90^{\circ}$
\therefore In $\triangle \triangle$ CAM, EBM :
$\left\{\begin{array}{l}\mathrm{m}(\angle \mathrm{CAM})=\mathrm{m}(\angle \mathrm{EBM})=90^{\circ} \\ \mathrm{m}(\angle \mathrm{AMC})=\mathrm{m}(\angle \mathrm{BME})(\text { V.O.A. }) \\ \mathrm{MA}=\mathrm{MB} \text { (lengths of two radii) }\end{array}\right.$
\therefore The two triangles are congruent and we deduce that $\mathrm{CM}=\mathrm{EM}$
, $\because \mathrm{XM}=\mathrm{YM}$ (lengths of two radii)
, by subtracting
$\therefore \mathrm{CX}=\mathrm{YE}$
(Q.E.D.)

5
[a] $\because \overrightarrow{\mathrm{XA}}, \overrightarrow{\mathrm{XB}}$ are two tangents to the circle
$\therefore \mathrm{XA}=\mathrm{XB}$
\therefore In $\triangle \mathrm{ABX}$

$m(\angle \mathrm{XAB})=\mathrm{m}(\angle \mathrm{XBA})=\frac{180^{\circ}-50^{\circ}}{2}=65^{\circ}$
,$\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{BAD})+\mathrm{m}(\angle \mathrm{DCB})=180^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BAD})=180^{\circ}-115^{\circ}=65^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{XAB})=\mathrm{m}(\angle \mathrm{BAD})$
$\therefore \overrightarrow{\mathrm{AB}}$ bisects $\angle \mathrm{DAX}$
(Q.E.D.1)
,$\because \mathrm{m}(\angle \mathrm{ADB})$ (inscribed)

$$
=\mathrm{m}(\angle \mathrm{XAB})(\text { tangency })=65^{\circ}
$$

$\therefore \mathrm{m}(\angle \mathrm{BAD})=\mathrm{m}(\angle \mathrm{ADB})$
\therefore In $\triangle \mathrm{ABD}: \mathrm{BD}=\mathrm{BA}$
(Q.E.D.2)
[b] $\because \mathrm{AB}=\mathrm{CD}$
$\therefore \mathrm{m}(\overparen{\mathrm{AB}})=\mathrm{m}(\overparen{\mathrm{CD}})$
Subtracting $\mathrm{m} \overparen{(\mathrm{BD})}$ from both sides
$\therefore \mathrm{m}(\overparen{\mathrm{AD}})=\mathrm{m}(\overparen{\mathrm{BC}})$
$\therefore \mathrm{m}(\angle \mathrm{ACD})=\mathrm{m}(\angle \mathrm{BAC})$
\therefore In $\triangle \mathrm{ACE}: \mathrm{AE}=\mathrm{CE}$
$\therefore \triangle \mathrm{ACE}$ is an isosceles triangle.

Answers of model 3

1
1 a
(2) a
3 b
4 d
5 c
6 c

2
[a] $\because \overleftrightarrow{\mathrm{MN}}$ is the line of centres
, $\overline{\mathrm{AB}}$ is the common chord.
$\therefore \overline{\mathrm{AB}} \perp \overline{\mathrm{MN}}$
$\therefore \mathrm{m}(\angle \mathrm{BEN})=90^{\circ}$
In the quadrilateral CDNE :

$\therefore \mathrm{m}(\angle \mathrm{CDN})=360^{\circ}-\left(140^{\circ}+40^{\circ}+90^{\circ}\right)=90^{\circ}$
$\therefore \overleftrightarrow{\mathrm{ND}} \perp \overleftrightarrow{\mathrm{CD}}$
$\therefore \overrightarrow{\mathrm{CD}}$ is a tangent to the circle N at D
(Q.E.D.)

[b] $\because \mathrm{AB}=\mathrm{CD}$

(properties of the rectangle)
,$\because C E=C D$
$\therefore \mathrm{AB}=\mathrm{CE}$

$\therefore \mathrm{m}(\overparen{\mathrm{AB}})=\mathrm{m}(\overparen{\mathrm{CE}})$ and adding $\mathrm{m} \overparen{(\mathrm{BE})}$ to both sides.
$\therefore \mathrm{m}(\overparen{\mathrm{AE}})=\mathrm{m} \overparen{(\mathrm{BC})}$
$\therefore \mathrm{AE}=\mathrm{BC}$

3

[a] State by yourself.

$$
\text { [b] } \begin{aligned}
\because \mathrm{m}(\overparen{B C}) & =2 \mathrm{~m}(\angle \mathrm{~A}) \\
& =2 \times 30^{\circ}=60^{\circ}
\end{aligned}
$$

,$\because \mathrm{m}(\angle \mathrm{E})$

$$
=\frac{1}{2}[\mathrm{~m}(\overparen{\mathrm{AD}})-\mathrm{m}(\overparen{\mathrm{BC}})]
$$

$\therefore 50^{\circ}=\frac{1}{2}\left[\mathrm{~m}(\overparen{\mathrm{AD}})-60^{\circ}\right]$
$\therefore 100^{\circ}=\mathrm{m}(\overparen{\mathrm{AD}})-60^{\circ}$
$\therefore \mathrm{m}(\widehat{\mathrm{AD}})=160^{\circ}$

(First req.)
,$\because \mathrm{m}(\angle \mathrm{AFD})=\frac{1}{2}[\mathrm{~m}(\overparen{\mathrm{AD}})+\mathrm{m}(\overparen{\mathrm{BC}})]$
$\therefore \mathrm{m}(\angle \mathrm{AFD})=\frac{1}{2}\left[160^{\circ}+60^{\circ}\right]=110^{\circ}$
(Second req.)
4
[a] $\because \mathrm{m}(\angle \mathrm{ACB})$

$$
=\frac{1}{2} \mathrm{~m}(\angle \mathrm{AMB})=60^{\circ}
$$

(inscribed and central angles subtended the same $\operatorname{arc} \overparen{\mathrm{AB}}$)
(1)

$\because \stackrel{\rightharpoonup}{\mathrm{CD}} / / \overrightarrow{\mathrm{AB}}$
$\therefore \mathrm{m}(\overparen{\mathrm{AC}})=\mathrm{m}(\overparen{\mathrm{BC}})$
$\therefore \mathrm{AC}=\mathrm{BC}$
From (1) and (2) :
$\therefore \Delta \mathrm{CAB}$ is equilateral.
(Q.E.D.)
[b] $\because \overline{\mathrm{AB}} / / \overline{\mathrm{DC}}, \overleftrightarrow{\mathrm{AD}}$
is a transversal to them.
$\therefore \mathrm{m}(\angle \mathrm{A})+\mathrm{m}(\angle \mathrm{D})$

$$
\begin{equation*}
=180^{\circ} \tag{1}
\end{equation*}
$$

but $\angle \mathrm{CEH}$ is an exterior angle of the cyclic quadrilateral ABEH
$\therefore \mathrm{m}(\angle \mathrm{CEH})=\mathrm{m}(\angle \mathrm{A})$
From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{CEH})+\mathrm{m}(\angle \mathrm{D})=180^{\circ}$
\therefore HDCE is a cyclic quadrilateral.
(Q.E.D.)

5
[a] In $\triangle \mathrm{ABC}$:
$\because \mathrm{AC}=\mathrm{BC}$
$\therefore \mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle \mathrm{ABC})=65^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CAD})=130^{\circ}-65^{\circ}=65^{\circ}$
,$\because \mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{CAD})=65^{\circ}$

$\therefore \overrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the vertices of the triangle ABC
(Q.E.D.)
[b] $\because \mathrm{MF}=\mathrm{ME}$
(lengths of two radii)
, $\mathrm{XF}=\mathrm{YE}$
$\therefore \mathrm{MX}=\mathrm{MY}$
$\because \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{CD}}$
$\therefore \mathrm{AB}=\mathrm{CD}$

(Q.E.D.1)
$\because \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$
$\therefore \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \mathrm{AX}=\frac{1}{2} \mathrm{AB} \quad, \because \overline{\mathrm{MY}} \perp \overline{\mathrm{CD}}$
$\therefore \mathrm{Y}$ is the midpoint of $\overline{\mathrm{CD}}$
$\therefore \mathrm{CY}=\frac{1}{2} \mathrm{CD}$
,$\because \mathrm{AB}=\mathrm{CD}$
$\therefore \mathrm{AX}=\mathrm{CY}$
\therefore In $\triangle \triangle \mathrm{AXF}$, CYE
$\left\{\begin{array}{l}\mathrm{AX}=\mathrm{CY} \\ \mathrm{XF}=\mathrm{YE} \\ \mathrm{m}(\angle \mathrm{AXF})=\mathrm{m}(\angle \mathrm{CYE})=90^{\circ}\end{array}\right.$
$\therefore \triangle \mathrm{AXF} \equiv \triangle \mathrm{CYE} \quad \therefore \mathrm{AF}=\mathrm{CE}$
(Q.E.D.2)

Model

Answer the following questions : (Calculator is allowed)

1 Choose the correct answer from those given :
(1) The inscribed angle drawn in a semicircle is
(a) an acute.
(b) an obtuse.
(c) a straight.
(d) a right.
(2) In the opposite figure :

Circle of centre M
If $\mathrm{m}(\widehat{\mathrm{AB}})=50^{\circ}$, then $\mathrm{m}(\angle \mathrm{ADB})=$
(a) 25°
(b) 50°
(c) 100°
(d) 150°

3 The number of symmetric axes of any circle is
(a) zero
(b) 1
(c) 2
(d) an infinite number.

4 In the opposite figure :
If $m(\angle A)=120^{\circ}$, then $m(\angle C)=$
(a) 60°
(b) 90°
(c) 120°
(d) 180°

5 If the straight line L is a tangent to the circle M of diameter length 8 cm . , then the distance between L and the centre of the circle equals
cm.
(a) 3
(b) 4
(c) 6
(d) 8
(6) The surface of the circle $M \cap$ the surface of the circle $N=\{A\}$ and the radius length of one of them is 3 cm . and $\mathrm{MN}=8 \mathrm{~cm}$., then the radius length of the other circle equals \qquad cm.
(a) 5
(b) 6
(c) 11
(d) 16
[a] Complete and prove that :
In a cyclic quadrilateral, each two opposite angles are

[b] In the opposite figure :

ABC is a triangle inscribed in a circle
, $\overleftrightarrow{B D}$ is a tangent to the circle at B
, $\mathrm{X} \in \overline{\mathrm{AB}}, \mathrm{Y} \in \overline{\mathrm{BC}}$ where $\overline{\mathrm{XY}} / / \overleftrightarrow{\mathrm{BD}}$
Prove that : AXYC is a cyclic quadrilateral.

[3] In the opposite figure:
Two circles are touching internally at B
, $\overrightarrow{\mathrm{AB}}$ is a common tangent
, $\overrightarrow{\mathrm{AC}}$ is a tangent to the smaller circle at C
, $\overrightarrow{\mathrm{AD}}$ is a tangent to the greater circle at D
, $\mathrm{AC}=15 \mathrm{~cm} ., \mathrm{AB}=(2 x-3) \mathrm{cm}$.

and $A D=(y-2) \mathrm{cm}$.
Find : The value of each of x and y

[b] In the opposite figure :

$\overline{\mathrm{AB}}$ is a diameter in the circle M
, $C \in$ the circle $M, m(\angle C A B)=30^{\circ}$
, D is midpoint of $\widehat{\mathrm{AC}}, \overline{\mathrm{DB}} \cap \overline{\mathrm{AC}}=\{\mathrm{H}\}$

1 Find : $m(\angle \mathrm{BDC})$ and $m(\widehat{\mathrm{AD}})$
(2) Prove that : $\overline{\mathrm{AB}} / / \overline{\mathrm{DC}}$
[a] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords equal in length in circle M , X is the midpoint of $\overline{\mathrm{AB}}, \mathrm{Y}$ is the midpoint of $\overline{\mathrm{AC}}$
, $m(\angle \mathrm{CAB})=70^{\circ}$
1 Calculate : m ($\angle \mathrm{DMH}$)

(2) Prove that : $\mathrm{XD}=\mathrm{YH}$
[b] In the opposite figure :
$\mathrm{m}(\angle \mathrm{A})=30^{\circ}, \mathrm{m}(\overparen{\mathrm{HC}})=120^{\circ}$
,$m(\overparen{B C})=m(\overparen{D H})$
1 Find : $\mathrm{m}(\widehat{\mathrm{BD}}$ the minor)

(2) Prove that : $\mathrm{AB}=\mathrm{AD}$

5 [a] In the opposite figure :
$\overrightarrow{D A}$ and $\overrightarrow{D B}$ are two tangents of the circle M and $\mathrm{AB}=\mathrm{AC}$

Prove that :

$\overline{\mathrm{AC}}$ is a tangent to the circle passing through the vertices of the triangle ABD

Rnlano fils

Final Examinations

[b] In the opposite figure :

C is the midpoint of $\overline{\mathrm{AB}}, \overrightarrow{\mathrm{MC}} \cap$ the circle $\mathrm{M}=\{\mathrm{D}\}$
, $\mathrm{m}(\angle \mathrm{MAB})=20^{\circ}$
Find : $m(\angle B H D)$ and $m(\overparen{A D B})$

Model

1 Choose the correct answer from those given :

1 The measure of the arc which equals half the measure of the circle equals \qquad
(a) 360°
(b) 180°
(c) 120°
(d) 90°
(2) The number of common tangents of two touching circles externally equals
(a) 0
(b) 1
(c) 2
(d) 3

3 The measure of the inscribed angle drawn in a semicircle equals
(a) 45°
(b) 90°
(c) 120°
(d) 80°

4 The angle of tangency is included between
(a) two chords.
(b) two tangents.
(c) a chord and a tangent.
(d) a chord and a diameter.
5. ABCD is a cyclic quadrilateral, $\mathrm{m}(\angle \mathrm{A})=60^{\circ}$, then $\mathrm{m}(\angle \mathrm{C})=$
(a) 60°
(b) 30°
(c) 90°
(d) 120°
(6) If M, N are two touching circles internally, their radii lengths are $5 \mathrm{~cm} ., 9 \mathrm{~cm}$. , then $\mathrm{MN}=$ \qquad cm .
(a) 14
(b) 4
(c) 5
(d) 9

2] [a] In the opposite figure :

$\mathrm{AB}=\mathrm{AC}, \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$,
$\overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}$
Prove that : $\mathrm{XD}=\mathrm{YE}$

[b] In the opposite figure :

ABCD is a quadrilateral in which $\mathrm{AB}=\mathrm{AD}$,
$\mathrm{m}(\angle \mathrm{ABD})=30^{\circ}$,
$\mathrm{m}(\angle \mathrm{C})=60^{\circ}$
Prove that : $A B C D$ is a cyclic quadrilateral.

3 [a] State two cases of a cyclic quadrilateral.
[b] In the opposite figure :
$\overline{\mathrm{BC}}$ is a tangent at B ,
E is the midpoint of $\overparen{\mathrm{BF}}$
Prove that :
$A B C D$ is a cyclic quadrilateral.

4 [a] In the opposite figure :
A circle is drawn touches
the sides of a triangle
$\mathrm{ABC}, \overline{\mathrm{AB}}, \overline{\mathrm{BC}}, \overline{\mathrm{AC}}$ at
$D, E, F, A D=5 \mathrm{~cm}$,
$\mathrm{BE}=4 \mathrm{~cm} ., \mathrm{CF}=3 \mathrm{~cm}$.

Find the perimeter of $\triangle \mathrm{ABC}$
[b] In the opposite figure :
$\overrightarrow{\mathrm{AF}}$ is a tangent to the circle at $\mathrm{A}, \overrightarrow{\mathrm{AF}} / / \overrightarrow{\mathrm{DE}}$

Prove that :

DEBC is a cyclic quadrilateral.

In the opposite figure :
$\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents
to the circle at B, C
, $\mathrm{m}(\angle \mathrm{A})=70^{\circ}$,
$\mathrm{m}(\angle \mathrm{CDE})=125^{\circ}$

Prove that :

$1 \mathrm{CB}=\mathrm{CE}$
(2) $\overrightarrow{\mathrm{AC}} / / \overrightarrow{\mathrm{BE}}$

Model examination for the merge students

Answer the following questions in the same paper: (Calculator is allowed)

1 Complete each of the following :

1 The longest chord in the circle is called
(2) The straight line passing through the center of the circle and the midpoint of any chord is \qquad
\qquad
(3) The two tangent-segments drawn to a circle from a point outside it are in length.
\qquad

4 In the opposite figure :
The length of $\overline{\mathrm{MD}}=$ \qquad cm .
5 The number of symmetry axes of a circle is \qquad

6. If $\overline{\mathrm{AC}}$ is a diameter in a circle M , then $\mathrm{m}(\widehat{\mathrm{AC}})=$

2 Choose the correct answer from those given :

1 If $A \in$ the circle M of diameter length 6 cm .
, then MA = \qquad cm .
(a) 3
(b) 4
(c) 5
(d) 6
(2) In the opposite figure : $m(\angle A C B)=$
(a) 40°
(b) 80°
(c) 90°
(d) 180°

3 The number of the common tangents of two distant circles is
(a) 1
(b) 2
(c) 3
(d) 4
(4) In the opposite figure :

The length of $\overline{\mathrm{BC}}=$ \qquad cm .
(a) 3
(b) 4
(c) 5
(d) 6

5 The number of circles which can be drawn passing through the endpoints of a line segment $\overline{\mathrm{AB}}$ equals
(a) 1
(b) 2
(c) 3
(d) an infinite number.

6 In the opposite figure :
$\mathrm{m}(\angle \mathrm{AHC})=$
(a) 25°
(b) 50°
(c) 75°
(d) 100°

3 Put $(\mathbb{\Omega})$ for the correct statement, (X) for the incorrect statement :
1 If M, N are two touching externally circles with radii lengths are $\mathrm{r}_{1}=5 \mathrm{~cm}$., $\mathrm{r}_{2}=3 \mathrm{~cm}$., then $\mathrm{MN}=15 \mathrm{~cm}$.

(3) The quadrilateral ABCD is a cyclic quadrilateral if $m(\angle A)+m(\angle C)=90^{\circ}$

4 In the opposite figure :
$m(\widehat{\mathrm{AC}})=100^{\circ}$

5 In the opposite figure :
$m(\widehat{\mathrm{AB}})+m(\overparen{C D})=300^{\circ}$

6 In the opposite figure :
The perimeter of
$\Delta \mathrm{ABC}=9 \mathrm{~cm}$.

4 Join from the column (A) to the suitable one of the column (B) :

(A)	(B)
1 The measure of the inscribed angle which is drawn in a semicircle equals (2) In the opposite figure : $\mathrm{m}(\angle \mathrm{~A})=\ldots \ldots \ldots \ldots \ldots$	- 130°
(3) In the opposite figure : $\overrightarrow{\mathrm{BD}}$ is a tangent at B , $\mathrm{m}(\angle \mathrm{DBC})=140^{\circ}$, then $m(\angle A)=$ \qquad	- 90°
4 The radius of the circumcircle of the vertices of right-angled triangle of hypotenuse length 10 cm . equals cm .	- 30°
5] In the opposite figure : $\triangle M A B$ is an equilateral triangle, $\overrightarrow{\mathrm{BC}}$ is a tangent at B , , then $m(\angle A B C)=$ \qquad	- $2: 1$
6 The ratio between the measures of the central angle and inscribed angle subtended by the same arc is	

Cairo Governorate

Answer the following questions: (Calculator is allowed)

1 Choose the correct answer from those given :

1 The area of the rhombus with diagonal lengths $6 \mathrm{~cm} ., 8 \mathrm{~cm}$. is cm^{2}
(a) 2
(b) 14
(c) 24
(d) 48
(2. Two distant circles M and N with radii lengths 6 cm and 8 cm respectively , then MN \qquad 14 cm .
(a) $<$
(b) $>$
(c) $=$
(d) \geq
(3) The measure of the inscribed angle is \qquad the measure of the central angle subtended by the same arc.
(a) half
(b) twice
(c) quarter
(d) third

4 The length of the side opposite to the angle of measure 30° in the right-angled triangle equals \qquad the length of the hypotenuse.
(a) $\frac{1}{2}$
(b) $\frac{\sqrt{3}}{2}$
(c) $\sqrt{2}$
(d) 2
5. In the cyclic quad. ABCD , if $\mathrm{m}(\angle \mathrm{A})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{C})$, then $\mathrm{m}(\angle \mathrm{A})=$
(a) 20
(b) 30
(c) 60
(d) 120

6 The angle of measure 40° is the complemented angle of the angle of measure \qquad
(a) 320
(b) 140
(c) 60
(d) 50

2 [a] Mention two cases of the cyclic quadrilateral.
[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter of the circle $\mathrm{M}, \mathrm{D} \in \overrightarrow{\mathrm{AB}}$
, $\mathrm{D} \notin \overline{\mathrm{AB}}, \overrightarrow{\mathrm{DE}} \perp \overrightarrow{\mathrm{AB}}, \mathrm{C} \in \overparen{\mathrm{AB}}$
, $\overrightarrow{\mathrm{CB}} \cap \overrightarrow{\mathrm{DE}}=\{\mathrm{E}\}$
1 Find : m ($\angle \mathrm{ACB}$)

(2) Prove that : The figure $A C D E$ is a cyclic quadrilateral.

Klland
[3] [a] Find the measure of the arc which represents $\frac{1}{3}$ of the measure of the circle.

[b] In the opposite figure :

$\triangle \mathrm{ABC}$ is drawn inside the circle M
, $\mathrm{AB}=\mathrm{AC}, \mathrm{m}(\angle \mathrm{BMC})=80^{\circ}$
Find : $1 \mathrm{~m}(\angle \mathrm{ABC})$

(2) The measure of the major arc $\overparen{B C}$

4 [a] In the opposite figure :

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{BC}}$ are two chords in the circle $\mathrm{M}, \overrightarrow{\mathrm{MD}} \perp \overline{\mathrm{AB}}$, $\overrightarrow{\mathrm{ME}} \perp \overrightarrow{\mathrm{CB}}, \mathrm{MD}=\mathrm{ME}$
, $\mathrm{m}(\angle \mathrm{ABC})=70^{\circ}$
1 Find : m ($\angle \mathrm{DME}$)

(2) Prove that : $\mathrm{AB}=\mathrm{CB}$
[b] In the opposite figure :
$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ are two tangents to
the circle M at B and C respectively
, $\overline{\mathrm{BD}} / / \overrightarrow{\mathrm{AC}}$
Prove that : $\overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABD}$

5 [a] Using the geometric tools, draw $\overline{\mathrm{AB}}$ with length 6 cm , and then draw a circle passing through the two points A, B with radius length 4 cm . What is the length of the radius of the smallest circle passing through the two points A and B ?
[b] In the opposite figure :
A circle $\mathrm{M}, \mathrm{AC}=\mathrm{BC}$
, $\overrightarrow{\mathrm{AD}}$ is a tangent to the circle at $\mathrm{A}, \mathrm{m}(\angle \mathrm{CAD})=50^{\circ}$
1 Find: $m(\angle \mathrm{ABC}), \mathrm{m}(\angle \mathrm{BEC})$
(2) Prove that :
$\overrightarrow{\mathrm{BC}}$ is a tangent to the circle passing through the vertices of the triangle BEO

2) Giza Governorate

Answer the following questions:

1 Choose the correct answer :

1 In the opposite figure :
ABCD is a cyclic quadrilateral
, $\mathrm{m}(\angle \mathrm{A})=2 x, \mathrm{~m}(\angle \mathrm{C})=3 x$
, then the value of $x=$ \qquad .
(a) 20
(b) 30
(c) 32
(d) 36

(2) If the ratio between the perimeters of two squares is 1:2, then the ratio between their areas equals
(a) $1: 2$
(b) $2: 1$
(c) $1: 4$
(d) $4: 1$
(3) The measure of the inscribed angle in a semicircle equals
(a) 45
(b) 90
(c) 120
(d) 180

4 The median of the triangle divides its surface into two triangles
(a) congruent.
(b) equal in area.
(c) isosceles.
(d) right-angled.

5 If the two circles M, N are touching internally, their radii lengths are $3 \mathrm{~cm} ., 5 \mathrm{~cm}$. , then $\mathrm{MN}=$ \qquad cm.
(a) 3
(b) 5
(c) 2
(d) 8

6 The number of triangles in the opposite figure equals
(a) 3
(b) 4
(c) 5
(d) 6

2 [a] In the opposite figure :
A circle of centre M
, $\mathrm{m}(\angle \mathrm{BMD})=150^{\circ}$
Find with proof : $m(\angle C)$
[b] In the opposite figure :
ABC is an inscribed triangle in a circle M in which $m(\angle B)=m(\angle C)$
, X is the midpoint of $\overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
Prove that : MX $=$ MY

3 [a] In the opposite figure :
M, N are two intersecting circles at A, B
, $\overleftrightarrow{\mathrm{BD}} / / \overleftrightarrow{\mathrm{MN}}$ and intersects the two circles at D , E
Prove that : $\mathrm{DE}=2 \mathrm{MN}$

[b] In the opposite figure :
$\overrightarrow{\mathrm{AB}}$ is a tangent to the circle M at A
, $\mathrm{MA}=8 \mathrm{~cm}$. $, \mathrm{m}(\angle \mathrm{ABM})=30^{\circ}, \overline{\mathrm{AC}} \perp \overline{\mathrm{MB}}$
Find : The length of each of $\overline{\mathrm{AB}}, \overline{\mathrm{AC}}$

4 [a] In the opposite figure :
$\overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments to the circle at B, C

$$
, \mathrm{m}(\angle \mathrm{~A})=50^{\circ}, \mathrm{m}(\angle \mathrm{CDE})=115^{\circ}
$$

Prove that : $1 \overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABE}$

$$
\text { (2) } \mathrm{CB}=\mathrm{CE}
$$

[b] In the opposite figure :
$\mathrm{m}(\angle \mathrm{ABE})=100^{\circ}$
, $m(\angle \mathrm{CAD})=40^{\circ}$
Prove that : $m(\overparen{C D})=m(\widehat{A D})$

, $\mathrm{m}(\angle \mathrm{AMB})=120^{\circ}$

Geometry

3 Alexandria Governorate

Answer the following questions: (Calculators are permitted)

1 Choose the correct answer from those given :
1 In the opposite figure :
$\overleftrightarrow{\mathrm{AB}} \cap$ the surface of the circle $\mathrm{M}=$ \qquad
(a) $\{C, D\}$
(b) $\overline{\mathrm{CD}}$
(c) $\stackrel{\rightharpoonup}{C D}$
(d) \varnothing

(2) $\angle \mathrm{A}$ and $\angle \mathrm{B}$ are two complementary angles, $\angle \mathrm{B}$ and $\angle \mathrm{C}$ are two supplementary angles, $\mathrm{m}(\angle \mathrm{A})=30^{\circ}$, then $\mathrm{m}(\angle \mathrm{C})=$
(a) 30
(b) 60
(c) 90
(d) 120

3 If the surface of the circle $M \cap$ the surface of the circle $N=\{A\}$ and the radius length of one of them equals 3 cm and $\mathrm{MN}=8 \mathrm{~cm}$., then the radius length of the other circle equals \qquad cm.
(a) 5
(b) 6
(c) 11
(d) 16

4] In the opposite figure :
If the side length of the square $=10 \mathrm{~cm}$.
, then the surface area of the circle $=$ \qquad cm^{2}
(a) 100π
(b) 25π
(c) 50π
(d) 40π

5 A circle can be drawn passing through the vertices of a
(a) rhombus
(b) parallelogram
(c) trapezium
(d) rectangle

6 The rhombus whose two diagonal lengths are 12 cm . and 16 cm ., then its side length equals \qquad cm .
(a) 6
(b) 8
(c) 10
(d) 20

2 [a] In the opposite figure :
$\overline{C D}$ is a diameter in the circle M
, $\mathrm{AB}=10 \mathrm{~cm}$, $\overline{\mathrm{MH}} \perp \overline{\mathrm{AB}}$
, $\mathrm{m}(\angle \mathrm{AMD})=30^{\circ}$
Find : The length of $\overline{C D}$

[b] ABCD is a quadrilateral inscribed in a circle, E is a point outside the circle, $\overrightarrow{\mathrm{EA}}$ and $\overrightarrow{\mathrm{EB}}$ are two tangents to the circle at A and B , if $\mathrm{m}(\angle \mathrm{AEB})=70^{\circ}$ and $\mathrm{m}(\angle \mathrm{ADC})=125^{\circ}$, prove that : $\mathrm{AB}=\mathrm{AC}$

Klland

3 [a] In the opposite figure :
$\mathrm{m}(\angle \mathrm{A})=30^{\circ}, \mathrm{m}(\overparen{\mathrm{HC}})=120^{\circ}$
, $\mathrm{m}(\overparen{\mathrm{BC}})=\mathrm{m}(\overparen{\mathrm{DH}})$
1 Find : m ($\widehat{\mathrm{BD}})$ «the minor arc»

(2) Prove that: $\mathrm{AB}=\mathrm{AD}$
[b] In the opposite figure :
ABCD is a quadrilateral, $\mathrm{AB}=\mathrm{AD}$
, $\mathrm{m}(\angle \mathrm{ABD})=30^{\circ}$
, $m(\angle C)=60^{\circ}$
Prove that : ABCD is a cyclic quadrilateral.

4 [a] In the opposite figure :
$\stackrel{\mathrm{CD}}{ }$ is a tangent to the circle at C
$, \stackrel{\rightharpoonup}{\mathrm{CD}} / / \overrightarrow{\mathrm{AB}}, \mathrm{m}(\angle \mathrm{AMB})=120^{\circ}$
Prove that : The triangle CAB is an equilateral triangle.
[b] In the opposite figure :
M and N are two intersecting circles at A and B
,$\overleftrightarrow{\mathrm{AD}}$ is drawn to intersect the circle M at E and the circle N at D
, $\overleftrightarrow{\mathrm{BC}}$ is drawn to intersect the circle M at F and the circle N at C
, $m(\angle C)=70^{\circ}$

Prove that : $\overline{\mathrm{CD}} / / \overline{\mathrm{EF}}$
5 [a] In the opposite figure :
$\mathrm{AC}=\mathrm{BC}, \mathrm{m}(\angle \mathrm{ABC})=65^{\circ}$
, $\mathrm{m}(\angle \mathrm{DAB})=130^{\circ}$
Prove that : $\overrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the vertices of the triangle $A B C$

[b] In the opposite figure :
$\overrightarrow{\mathrm{AD}}$ is a tangent to the circle M
, $\overrightarrow{\mathrm{AC}}$ intersects the circle M at B, C
, $\mathrm{m}(\angle \mathrm{A})=56^{\circ}$ and H is the midpoint of $\overline{\mathrm{BC}}$
Find with proof : m ($\angle \mathrm{DMH})$

Klnondirs

El-Kalyoubia Governorate

Answer the following questions:

1 Choose the correct answer :

(1) ABC is a triangle in which: $(\mathrm{AB})^{2}>(\mathrm{BC})^{2}+(\mathrm{AC})^{2}$, then $\angle \mathrm{C}$ is
(a) acute.
(b) right.
(c) obtuse.
(d) straight.
(2) If M and N are two intersecting circles whose radii length are 5 cm and 2 cm . , then $M N \in$ \qquad
(a) $] 3,7[$
(b) $[3,7[$
(c) $] 3,7]$
(d) $[3,7]$

3 If $\triangle \mathrm{ABC} \sim \triangle \mathrm{XYZ}, \mathrm{m}(\angle \mathrm{A})=50^{\circ}, \mathrm{m}(\angle \mathrm{B})=60^{\circ}$, then $\mathrm{m}(\angle \mathrm{Z})=$ \qquad
(a) 90
(b) 110
(c) 10
(d) 70

4 The measure of the central angle which is opposite to an arc of length $\frac{1}{3} \pi r$ equals ...
(a) 30
(b) 60
(c) 120
(d) 240

5 ABC is a right-angled triangle at $\mathrm{B}, \overline{\mathrm{BD}} \perp \overline{\mathrm{AC}}$ where $\overline{\mathrm{BD}} \cap \overline{\mathrm{AC}}=\{\mathrm{D}\}$, then the projection of $\overline{\mathrm{BD}}$ on $\stackrel{\rightharpoonup}{\mathrm{AC}}$ is
(a) A
(b) B
(c) C
(d) D

6 If ABCD is a cyclic quadrilateral, then $\mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle$ \qquad
(a) BCA
(b) DBA
(c) BDC
(d) ACD

2 [a] In the opposite figure :
$\overline{\mathrm{AB}} / / \overline{\mathrm{CD}}, \mathrm{m}(\widehat{\mathrm{AC}})=50^{\circ}$
, $\mathrm{m}(\angle \mathrm{BED})=(3 y-5)^{\circ}$
Find : The value of y

[b] Using your geometric tools, draw $\overline{\mathrm{AB}}$ with length 4 cm , then draw a circle passing through the two points A and B whose diameter length is 5 cm .
How many circles can be drawn? (Don't erase the arcs).
3 [a] In the opposite figure :
A circle with centre M
, X and Y are the midpoints of $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ respectively.
Prove that: 1 AXYM is a cyclic quadrilateral.

$$
\text { (2) } \mathrm{m}(\angle \mathrm{MXY})=\mathrm{m}(\angle \mathrm{MCY})
$$

[b] In the opposite figure :

$\mathrm{m}(\angle \mathrm{A})=120^{\circ}, \mathrm{m}(\angle \mathrm{EBF})=65^{\circ}$
, $\overline{\mathrm{DC}} / / \overrightarrow{\mathrm{BF}}$
Find with proof :
$1 \mathrm{~m}(\angle \mathrm{C})$
$2 \mathrm{~m}(\angle \mathrm{D})$

4 [a] In the opposite figure :
Circle $M \cap$ circle $N=\{A, B\}$
, $\overleftrightarrow{\mathrm{AB}} \cap \overleftrightarrow{\mathrm{MN}}=\{C\}, D \in \overleftrightarrow{M N}$
$, \overline{\mathrm{MX}} \perp \overline{\mathrm{AD}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{BD}}$

Prove that : $M X=M Y$
[b] $A B C$ is a triangle inscribed in a circle, $\overrightarrow{A D}$ is a tangent to the circle at A
, $X \in \overline{\mathrm{AB}}, Y \in \overline{\mathrm{AC}}$, where $\overline{\mathrm{XY}} / / \overline{\mathrm{BC}}$
Prove that : $\overrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the points A, X and Y
5 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent-segments to the circle M
, $\overline{\mathrm{AM}} \cap \overline{\mathrm{CB}}=\{\mathrm{E}\}$
and $\overline{\mathrm{BD}}$ is a diameter of the circle.
Prove that : $\overline{\mathrm{AM}} / / \overline{\mathrm{CD}}$

[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a chord in the circle M
, $\overline{\mathrm{CM}} / / \overline{\mathrm{AB}}$
,$\overline{\mathrm{BC}} \cap \overline{\mathrm{AM}}=\{\mathrm{E}\}$
Prove that : $\mathrm{BE}>\mathrm{AE}$

5 El-Sharkia Governorate

Answer the following questions: (Calculator is allowed)
1 Choose the correct answer from the given ones :
1 A circle can be drawn passing through the vertices of a
(a) rhombus.
(b) rectangle.
(c) trapezium.
(d) parallelogram.

Klland
(2) A circle with diameter length 10 cm ., the straight line L is distant from its centre by 5 cm ., then the straight line L is \qquad ..
(a) a tangent.
(b) a secant.
(c) outside the circle.
(d) a diameter of the circle.

3 The number of common tangents of two touching circles externally equals
(a) zero
(b) 1
(c) 2
(d) 3

4 If M, N are two touching circles externally, the lengths of their radii are $2 \mathrm{~cm} ., 4 \mathrm{~cm}$. respectively, then the area of the circle with diameter $\overline{\mathrm{MN}}$ equals cm^{2}
(a) 36π
(b) 9π
(c) 16π
(d) 4π

5 In the opposite figure :
A circle $\mathrm{M}, \overline{\mathrm{MA}} \perp \overline{\mathrm{MB}}$
, then $\mathrm{m}(\angle \mathrm{ACB})=$
(a) 45°
(b) 90°
(c) 145°
(d) 135°

6) In the opposite figure :
$m(\widehat{\mathrm{AC}})=100^{\circ}, \mathrm{m}(\widetilde{\mathrm{DB}})=120^{\circ}$
, then $\mathrm{m}(\angle \mathrm{AEC})=$
(a) 110°
(b) 55°
(c) 70°
(d) 100°

2 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two equal chords in circle M
, X is the midpoint of $\overline{\mathrm{AB}}$
, Y is the midpoint of $\overline{\mathrm{AC}}$
Prove that : XD $=\mathrm{YE}$

[b] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent-segments to the circle at B and C
, $\mathrm{m}(\angle \mathrm{A})=70^{\circ}$, $\mathrm{m}(\angle \mathrm{CDE})=125^{\circ}$
Prove that : $\overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABE}$

3 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle M
$, m(\overparen{B D})=m(\overparen{D C}), m(\angle B D C)=140^{\circ}$
Find with proof : $1 \mathrm{~m}(\angle \mathrm{ABC})$

$$
2 \mathrm{~m}(\widehat{\mathrm{ABD}})
$$

Klnondus
[b] In the opposite figure :
$\overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle at $\mathrm{A}, \mathrm{X} \in \overline{\mathrm{AB}}$
, $\mathrm{Y} \in \overline{\mathrm{AC}}$ and $\overline{\mathrm{XY}} / / \overline{\mathrm{BC}}$

Prove that :

$\overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle which passes through the points A, X and Y

4 [a] In the opposite figure :
A circle M, D is the midpoint of $\overparen{A B}$
, $\mathrm{m}(\angle \mathrm{DCB})=25^{\circ}$
Find : m ($\angle \mathrm{AMB}$)

[b] In the opposite figure :
$A B C$ is an equilateral triangle drawn in the circle
, $\mathrm{D} \in \widehat{\mathrm{AB}}, \mathrm{E} \in \overline{\mathrm{DC}}$, where $\mathrm{AD}=\mathrm{DE}$
Prove that : $1 \triangle \mathrm{ADE}$ is an equilateral triangle.

$$
2 \mathrm{~m}(\angle \mathrm{DAB})=\mathrm{m}(\angle \mathrm{EAC})
$$

5 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ is a tangent-segment to the circle M at A
, $\mathrm{AM}=8 \mathrm{~cm}$., $\mathrm{m}(\angle \mathrm{ABM})=30^{\circ}$
1 Find : The length of $\overline{\mathrm{AB}}$
2 Prove that: $\triangle \mathrm{XAB}$ is an isosceles triangle.
[b] In the opposite figure :
$\mathrm{AD}=\mathrm{AC}$
, $\overrightarrow{\mathrm{AF}}$ bisects $\angle \mathrm{BAC}$
Prove that : DBFE is a cyclic quadrilateral.

6 El-Monofia Governorate

Answer the following questions: (Calculators are permitted)
1 Choose the correct answer from those given :
1 The axis of symmetry of a circle is
(a) the diameter.
(b) the chord.
(c) the straight line passing through the center.
(d) the tangent.

Klnon wirs
(2) XYZ is a triangle. If $(\mathrm{XY})^{2}-(\mathrm{YZ})^{2}>(\mathrm{XZ})^{2}$, then $\angle \mathrm{Y}$ is
(a) acute.
(b) right.
(c) obtuse.
(d) reflex.

3 In the opposite figure :
If $\mathrm{AB}=\mathrm{AC}, \mathrm{BC}=\mathrm{BD}=\mathrm{AD}$
, then $m(\angle A)=$ \qquad
(a) 30
(b) 36
(c) 45
(d) 72

(4) ABCD is a cyclic quadrilateral in which $\mathrm{m}(\angle \mathrm{A})=2 \mathrm{~m}(\angle \mathrm{C})$, then $\mathrm{m}(\angle \mathrm{C})=$ \qquad -
(a) 30
(b) 60
(c) 90
(d) 120

5 In the opposite figure :
A circle $\mathrm{M}, \mathrm{MC}=4 \mathrm{~cm}$.
, $\mathrm{m}(\angle \mathrm{CMB})=60^{\circ}$
, then the length of $\widehat{\mathrm{BD}}=$ \qquad
(a) 4π
(b) 8π
(c) $\frac{8}{3} \pi$
(d) 16π

6. If $Y \in \overline{X Z}$ and $X Y=2 Y Z$, then the area of the square drawn on $\overline{X Y}=$ The area of the square drawn on $\overline{\mathrm{XZ}}$
(a) $\frac{9}{4}$
(b) $\frac{4}{9}$
(c) 2
(d) $\frac{1}{2}$

2 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent-segments to the circle M
, $\mathrm{m}(\angle \mathrm{BMC})=90^{\circ}$
Prove that : ABMC is a square.

[b] In the opposite figure :
$\overline{\mathrm{AC}}$ is a chord in the circle M
, $\overrightarrow{\mathrm{AB}}$ bisects $\angle \mathrm{CAM}$
, D is the midpoint of $\overline{\mathrm{AC}}$
Prove that : $\overline{\mathrm{DM}} \perp \overline{\mathrm{MB}}$

3 [a] In the opposite figure :
$\overline{\mathrm{AB}}, \overline{\mathrm{BC}}$ and $\overline{\mathrm{AC}}$ are tangents to the circle M at X
, Y and Z respectively, $\mathrm{AC}=10 \mathrm{~cm}$.
, $\mathrm{AX}=6 \mathrm{~cm}$. and the perimeter of $\triangle \mathrm{ABC}=24 \mathrm{~cm}$.
1 Find : The length of $\overline{\mathrm{AB}}$

(2) Determine the type of $\triangle \mathrm{ABC}$ according to the measures of its angles.
[b] $A B C$ is a triangle inscribed in a circle $, X \in \overparen{A B}, Y \in \overparen{A C}$ where $m(\widehat{\mathrm{AX}})=m(\widehat{\mathrm{AY}}), \overline{\mathrm{CX}} \cap \overline{\mathrm{AB}}=\{\mathrm{D}\}$ and $\overline{\mathrm{BY}} \cap \overline{\mathrm{AC}}=\{\mathrm{E}\}$
Prove that : 1 The figure BCED is a cyclic quadrilateral.

$$
\text { (2) } \mathrm{m}(\angle \mathrm{DEB})=\mathrm{m}(\angle \mathrm{XAB})
$$

4 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle M
, $\mathrm{CA}=\mathrm{CB}, \overline{\mathrm{MX}} \perp \overline{\mathrm{DA}}$
, $\overline{\mathrm{MY}} \perp \overline{\mathrm{EB}}$
Prove that : $\mathrm{CD}=\mathrm{CE}$
[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle M
, $\overleftrightarrow{\mathrm{EC}}$ is a tangent to the circle M at $\mathrm{C}, \overline{\mathrm{ED}} \perp \overline{\mathrm{AB}}$, where $\overline{\mathrm{ED}} \cap \overline{\mathrm{CB}}=\{\mathrm{F}\}$
Prove that: 1 The figure ADFC is a cyclic quadrilateral.
(2) $\triangle \mathrm{ECF}$ is an isosceles triangle.

(3) M and N are two intersecting circles at two points and the two radii lengths are 3 cm . and 5 cm ., then $\mathrm{MN} \in$
(a) $] 8, \infty[$
(b) $] 2, \infty[$
(c) $] 0,2[$
(d) $] 2,8[$
(4) ABCD is a cyclic quadrilateral in which $\mathrm{m}(\angle \mathrm{A})=3 \mathrm{~m}(\angle \mathrm{C})$, then $\mathrm{m}(\angle \mathrm{A})=$ \qquad .. ${ }^{\circ}$
(a) 90
(b) 45
(c) 135
(d) 120

5 In the opposite figure :
$\overline{\mathrm{MA}}, \overline{\mathrm{MB}}$ are two radii perpendicular in the circle M whose radius length is 7 cm .
, then the perimeter of the shaded part $=$ \square

(a) 14
(b) 11
(c) $38 \frac{1}{2}$
(d) 25

6 In the opposite figure :

$\overline{\mathrm{AB}}$ is a chord in the circle M , $\overline{\mathrm{MC}} \perp \overline{\mathrm{AB}}, \mathrm{D}$ is the midpoint of $\overline{\mathrm{MA}}, \mathrm{CD}=3 \mathrm{~cm}$. , then the surface area of the circle $M=$ \qquad

(a) 3
(b) 6
(c) 9
(d) 36

2 [a] In the opposite figure :
$\overline{\mathrm{AB}} / / \overline{\mathrm{CD}}, \mathrm{m}(\angle \mathrm{BAD})=20^{\circ}$
, $\mathrm{m}(\angle \mathrm{AEC})=(3 x-7)^{\circ}$
What is the value of X ?

[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle $\mathrm{M}, \overline{\mathrm{BD}}$ is a tangent-segment to the circle M at B, E is the midpoint of $\overline{\mathrm{AC}}$ and $\overrightarrow{\mathrm{EM}}$ intersects the circle M at X
Prove that : 1 The figure MEDB is a cyclic quadrilateral.

$$
2 \mathrm{~m}(\angle \mathrm{BAX})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{D})
$$

(a] In the opposite figure :

$A B C$ is a right-angled triangle at A
, $\mathrm{AC}=5 \mathrm{~cm} ., \mathrm{AB}=5 \sqrt{3} \mathrm{~cm}$.
, $\mathrm{m}(\angle \mathrm{DAC})=30^{\circ}$

Prove that : $\overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the vertices of $\triangle \mathrm{ABC}$

Klnondirs
[b] In the opposite figure :
$\overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments to
the circle M at B and C
, $\overline{\mathrm{AB}} / / \overline{\mathrm{CD}}$
Prove that : $\overrightarrow{\mathrm{CB}}$ bisects $\angle \mathrm{ACD}$

4 [a] In the opposite figure :
ABCD is a quadrilateral in which $\overline{\mathrm{AC}} \cap \overline{\mathrm{BD}}=\{\mathrm{M}\}, \mathrm{DA}=\mathrm{DC}$ $, \mathrm{m}(\angle \mathrm{ADM})=30^{\circ}, \mathrm{m}(\angle \mathrm{AMB})=80^{\circ}$
, $\mathrm{m}(\angle \mathrm{ABD})=50^{\circ}$
Prove that : The figure $A B C D$ is a cyclic quadrilateral.

[b] In the opposite figure :
$\overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two chords equal in length in the circle M, X and Y are the midpoints of $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ respectively, $\overrightarrow{\mathrm{MX}}$ intersects the circle M at $\mathrm{D}, \overrightarrow{\mathrm{MY}}$ intersects the circle M at E
Prove that : $\mathrm{XD}=\mathrm{YE}$

5 [a] In the opposite figure :
$\overrightarrow{\mathrm{EA}} \cap \overrightarrow{\mathrm{BD}}=\{\mathrm{C}\}$
, $m(\angle C)=36^{\circ}$
, $\mathrm{m}(\angle \mathrm{ABD})=22^{\circ}$
Find with the proof : $\mathrm{m}(\widehat{\mathrm{BE})}$
[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle M
$, \mathrm{m}(\angle \mathrm{CAB})=30^{\circ}, \mathrm{m}(\widehat{\mathrm{AD}})=\mathrm{m}(\widehat{\mathrm{DC}})$
1 Find with the proof : $m(\angle C D B)$
(2) Prove that : $\overline{\mathrm{DC}} / / \overline{\mathrm{AB}}$

$8)$
 El-Dakahlia Governorate

Answer the following questions: (Calculator is permitted)
1 [a] Choose the correct answer from the given ones :
1 A circle with greatest chord with length $=12 \mathrm{~cm}$., then the circumference of the circle $=$ \qquad cm.
(a) 12π
(b) 6π
(c) 24π
(d) 10π

Klland

(2) M and N are two circles whose radii lengths are $6 \mathrm{~cm} ., 8 \mathrm{~cm}$. and $M N=14 \mathrm{~cm}$. , then the two circles are \qquad
(a) intersecting.
(b) distant.
(c) one inside the other.
(d) touching externally.
(3) The inscribed angle drawn in a semicircle is \qquad angle.
(a) an acute
(b) a straight
(c) a right
(d) an obtuse

[b] In the opposite figure :

$\mathrm{m}(\angle \mathrm{ABH})=110^{\circ}$
, $\mathrm{m}(\angle \mathrm{CAD})=35^{\circ}$
Prove that : $m(\overparen{C D})=m(\widehat{A D})$

2 [a] Choose the correct answer from the given ones :
1 A chord is of length 8 cm . in a circle of diameter length 10 cm ., then the chord is at \qquad from the center of the circle.
(a) 2 cm .
(b) 4 cm .
(c) 3 cm .
(d) 6 cm .
(2) The number of common tangents of two circles touching internally is
(a) 1
(b) 3
(c) 2
(d) 0
(3) ABCD is a cyclic quadrilateral, $\mathrm{m}(\angle \mathrm{A})=2 \mathrm{~m}(\angle \mathrm{C})$, then $\mathrm{m}(\angle \mathrm{A})=$
(a) 30°
(b) 60°
(c) 90°
(d) 120°
[b] In the opposite figure :
$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ are two tangents to the circle at B, C
$, \mathrm{m}(\angle \mathrm{A})=70^{\circ}, \mathrm{m}(\angle \mathrm{D})=125^{\circ}$
1 Find : $\mathrm{m}(\angle \mathrm{ABC})$
(2) Prove that : $\mathrm{CB}=\mathrm{BH}$

3 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter of the circle $\mathrm{M}, \overline{\mathrm{CD}} / / \overline{\mathrm{AB}}$
, X is the midpoint of $\overline{\mathrm{MY}}$
, $\overline{\mathrm{MY}} \perp \overline{\mathrm{AB}}$
Find : $\mathrm{m}(\widehat{\mathrm{AC}}), \mathrm{m}(\overparen{\mathrm{CY}})$

[b] In the opposite figure :

$\overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two equal chords in the circle M
, $\overrightarrow{\mathrm{MD}} \perp \overrightarrow{\mathrm{AB}}$ and cuts the circle at X
, $\overline{\mathrm{MH}} \perp \overline{\mathrm{AC}}$ and cuts the circle at Y
Prove that : $\mathrm{XD}=\mathrm{HY}$

にlan wirs

4 [a] In the opposite figure :

$\overrightarrow{\mathrm{AO}}$ is a tangent to the circle at A
, $\overrightarrow{\mathrm{AO}} / / \overrightarrow{\mathrm{DH}}$
Prove that : DHBC is a cyclic quadrilateral.

[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a chord in the greater circle M and touches the smaller circle at C , if $\mathrm{AB}=14 \mathrm{~cm}$.
, find the area of the part included between the two circles.

5 [a] In the opposite figure :
The circle M passes through the vertices of the triangle ABC
, $\mathrm{m}(\angle \mathrm{AMB})=120^{\circ}$
, $\overleftrightarrow{\mathrm{CD}}$ is a tangent to the circle M at $\mathrm{C}, \overleftrightarrow{\mathrm{CD}} / / \overline{\mathrm{AB}}$
Prove that : $\triangle \mathrm{ABC}$ is equilateral.
[b] In the opposite figure :

$$
\begin{aligned}
& \mathrm{m}(\angle \mathrm{MAB})=60^{\circ} \\
& , \mathrm{m}(\angle \mathrm{MCB})=70^{\circ}
\end{aligned}
$$

Find : m (\angle AMC)

Ismailia Governorate

Answer the following questions: (Calculator is allowed)

1 Choose the correct answer from those given :

1 The least number of acute angles at any triangle equals
(a) zero
(b) 1
(c) 2
(d) 3
(2) The measure of the central angle drawn in $\frac{1}{3}$ circle equals
(a) 240
(b) 120
(c) 60
(d) 30

3 ABC is a triangle in which: $(\mathrm{AC})^{2}=(\mathrm{AB})^{2}+(\mathrm{BC})^{2}+5$, then $\angle \mathrm{B}$ is
(a) acute.
(b) right.
(c) obtuse.
(d) straight.

4 Which of the following figures is a cyclic quadrilateral ?
(a) The square.
(b) The rhombus.
(c) The parallelogram.
(d) The trapezium.

Geometry

5 If $\mathrm{AB}=8 \mathrm{~cm}$., then the length of the radius of the smallest circle can be drawn passing through the two points A and B equals cm .
(a) 1
(b) 2
(c) 3
(d) 4
6. In the opposite figure :

A square consists of congruent squares, then the area of the shaded part = \qquad the figure area.
(a) $\frac{1}{8}$
(b) $\frac{1}{4}$
(c) $\frac{3}{8}$
(d) $\frac{3}{4}$

2 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords of the circle M
, $\mathrm{D} \in \overparen{\mathrm{BC}}$
, $\mathrm{m}(\angle \mathrm{BMC})=\mathrm{m}(\angle \mathrm{BDC})=(2 X)^{\circ}$
Find with proof : m ($\angle \mathrm{A}$)
[b] In the opposite figure :
$\overline{\mathrm{AC}} \cap \overline{\mathrm{BD}}=\{\mathrm{E}\}$
, $\mathrm{EA}=\mathrm{ED}$
Prove that : EB $=\mathrm{EC}$

3 [a] In the opposite figure :
$A B C$ is a triangle in which $A B=A C$
, $\overrightarrow{\mathrm{BX}}$ bisects $\angle \mathrm{ABC}$ and intersects $\overline{\mathrm{AC}}$ at X
, $\overrightarrow{\mathrm{CY}}$ bisects $\angle \mathrm{ACB}$ and intersects $\overline{\mathrm{AB}}$ at Y
Prove that : BCXY is a cyclic quadrilateral.

[b] In the opposite figure :
$\overrightarrow{\mathrm{AD}}$ is a tangent to the circle at A
, $\mathrm{m}(\angle \mathrm{B})=70^{\circ}$
, $m(\overparen{B C})=120^{\circ}$
Find : $m(\angle D A B)$

4 [a] In the opposite figure :
$\overline{\mathrm{AC}}$ is a diameter of the circle M
, $\mathrm{m}(\angle \mathrm{C})=50^{\circ}, \mathrm{m}(\angle \mathrm{ABD})=60^{\circ}$
Find: $m(\angle C B D), m(\angle B A D)$

にlnon wirs

[b] In the opposite figure :

Two concentric circles at $\mathrm{M}, \overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords in the greater circle and two tangents to the smaller circle at X and Y respectively.
Prove that : $\mathrm{AB}=\mathrm{AC}$

5 [a] In the opposite figure :
Two circles are touching externally at C
, $\overline{\mathrm{AD}}$ is a tangent-segment to the smaller circle at D
, $\overline{\mathrm{AB}}$ is a tangent-segment to the greater circle at B If $A D=(y-2) \mathrm{cm}$.
, $\mathrm{AC}=(2 x-3) \mathrm{cm}$. $\mathrm{AB}=15 \mathrm{~cm}$.

Find with proof : The value of each of x and y

[b] In the opposite figure :

$\overline{\mathrm{AB}}$ is a diameter in the circle M
, $\overrightarrow{\mathrm{BA}} \cap \overrightarrow{\mathrm{DC}}=\{\mathrm{N}\}$
Prove that : NB > ND

10) Suez Governorate

Answer the following questions: (Calculator is allowed)
1 Choose the correct answer from those given :
1 The inscribed angle drawn in a semicircle is
(a) reflex.
(b) right.
(c) obtuse.
(d) acute.
(2) In the opposite figure :

If M is a circle, $\mathrm{m}(\angle \mathrm{AMB})=80^{\circ}$ then $m(\overparen{\mathrm{AB}})=$ \qquad ..
(a) 40
(b) 80
(c) 160
(d) 90

3 If the two circles M, N are touching externally, the length of the radius of one of them is 3 cm . , MN $=8 \mathrm{~cm}$., then the length of the radius of the other circle is \qquad cm .
(a) 5
(b) 6
(c) 11
(d) 16
(4) In the opposite figure :
$\mathrm{E} \in \overrightarrow{\mathrm{BA}}, \mathrm{m}(\angle \mathrm{C})=100^{\circ}$
, then $m(\angle$ DAE $)=$ \qquad .
(a) 80
(b) 60
(c) 100
(d) 200

5] In the opposite figure :
$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ are two tangents to the circle at B and $\mathrm{C}, \mathrm{m}(\angle \mathrm{ABC})=70^{\circ}$, then $m(\angle A)=$ \qquad
(a) 80
(b) 70
(c) 60
(d) 40

(6) The area of the circle $=$
(a) $2 \pi r$
(b) πr^{2}
(c) $2 \pi r^{2}$
(d) πr

2] [a] In the opposite figure :
If M is a circle,$\overline{M D} \perp \overline{\mathrm{AB}}$
, E is the midpoint of $\overline{\mathrm{AC}}$
, MD = ME
, prove that : $\mathrm{AB}=\mathrm{AC}$
[b] In the opposite figure :
If M is a circle, $\mathrm{m}(\angle \mathrm{BMC})=100^{\circ}$
, find : $1 \mathrm{~m}(\angle \mathrm{~A})$

$$
\text { (2) } \mathrm{m}(\angle \mathrm{MBC})
$$

3 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter of the circle M
, $\mathrm{C} \in \overrightarrow{\mathrm{BE}}, \mathrm{m}(\angle \mathrm{ACE})=60^{\circ}$
Find: $1 \mathrm{~m}(\angle \mathrm{AEB})$

$$
\text { 2 } \mathrm{m}(\angle \mathrm{CAE})
$$

[b] In the opposite figure :

$\overrightarrow{\mathrm{AD}}$ is a tangent to the circle M
, $\overrightarrow{A C}$ intersects the circle M at B, C
, E is the midpoint of $\overline{\mathrm{BC}}, \mathrm{m}(\angle \mathrm{A})=70^{\circ}$
Find : m (\angle DME)

Klnondirs

4 [a] State two cases of the cyclic quadrilateral.
[b] In the opposite figure :
ABC is an equilateral triangle
, $m(\angle \mathrm{D})=60^{\circ}$
Prove that : ABCD is a cyclic quadrilateral.

5 [a] In the opposite figure :
In the circle,$m(\angle \mathrm{ADB})=30^{\circ}$
, $\mathrm{m}(\widehat{\mathrm{AD}})=90^{\circ}$
Find: $1 \mathrm{~m}(\widehat{\mathrm{AB}})$
(2) $\mathrm{m}(\angle \mathrm{DCB})$

[b] In the opposite figure :
$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ are two tangents to the circle at B and C
, $\overrightarrow{\mathrm{AB}} / / \overline{\mathrm{CD}}, \mathrm{m}(\angle \mathrm{A})=40^{\circ}$
1 Find : $\mathrm{m}(\angle \mathrm{ABC})$
(2) Prove that : $\mathrm{BC}=\mathrm{BD}$

Answer the following questions :

1 Choose the correct answer from those given :
1 M and N are two intersecting circles. The two radii lengths are 3 cm . and 5 cm . respectively , then $\mathrm{MN} \in$
(a) $] 8, \infty[$
(b) $] 2, \infty[$
(c) $] 0,2[$
(d) $] 2,8[$
(2) If the straight line L is a tangent to the circle M of diameter length 10 cm ., then the distance between L and the center of the circle equals cm .
(a) 3
(b) 4
(c) 5
(d) 10
(3) The longest chord in the circle is called a
(a) chord.
(b) diameter.
(c) tangent.
(d) radius.

4 In the opposite figure :

If $m(\angle A)=120^{\circ}$
, then $\mathrm{m}(\angle \mathrm{DMB})=$
(a) 180°
(b) 120°
(c) 90°
(d) 60°

Klnoneris
(5) The ratio between the measure of the central angle and the measure of the inscribed angle subtended by the same arc is \qquad ..
(a) $4: 2$
(b) $2: 4$
(c) $3: 2$
(d) $2: 3$

6 In the opposite figure :
$\mathrm{AB}=8 \mathrm{~cm} ., \mathrm{MB}=5 \mathrm{~cm}$.
, then $\mathrm{MD}=$ \qquad
(a) 5 cm .
(b) 3 cm .
(c) 4 cm .
(d) 2 cm .

2 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ are two chords in the circle M
, $\overrightarrow{\mathrm{MX}} \perp \overline{\mathrm{AB}}$ and intersects the circle at F
, $\overrightarrow{\mathrm{MY}} \perp \overline{\mathrm{CD}}$ and intersects the circle at $\mathrm{E}, \mathrm{FX}=\mathrm{EY}$
Prove that : $1 \mathrm{AB}=\mathrm{CD}$
(2) $\mathrm{AF}=\mathrm{CE}$
[b] In the opposite figure :

$$
\begin{aligned}
& \overrightarrow{\mathrm{ED}} \cap \overrightarrow{\mathrm{CB}}=\{\mathrm{A}\} \\
& , \mathrm{m}(\overparen{\mathrm{CE}})=120^{\circ} \\
& , \mathrm{m}(\angle \mathrm{~A})=30^{\circ} \\
& \text { Find }: m(\overparen{\mathrm{BD}})
\end{aligned}
$$

3 [a] Using the given data, prove that :
$\overrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through
the vertices of the triangle $A B C$

[b] Using the given data, prove that :
The triangle XYM is an equilateral triangle.

4 [a] In the opposite figure :
A circle with center M
, $\mathrm{m}(\angle \mathrm{MAC})=25^{\circ}$
, $\mathrm{m}(\angle \mathrm{MBC})=45^{\circ}$

Find : m ($\angle \mathrm{AMB}$)

[b] In the opposite figure :

Two intersecting circles at A and $\mathrm{B}, \overline{\mathrm{CD}}$ passes through the point B and intersects the two circles at C and D , $\overrightarrow{\mathrm{CE}} \cap \overrightarrow{\mathrm{DF}}=\{\mathrm{X}\}$
Prove that : The figure AFXE is a cyclic quadrilateral.

5 [a] Using the given data, find :
The values of the symbols x and y
[b] In the opposite figure :
ABCD is a parallelogram
, $\mathrm{E} \in \overrightarrow{\mathrm{CD}}$ where $\mathrm{BE}=\mathrm{AD}$
Prove that : The figure ABDE is a cyclic quadrilateral.

Geometry

6. If $\triangle \mathrm{XYZ} \sim \triangle \mathrm{ABC}, \mathrm{m}(\angle \mathrm{Y})=60^{\circ}$ and $\mathrm{m}(\angle \mathrm{C})=40^{\circ}$, then $\mathrm{m}(\angle \mathrm{X})=$
(a) 40
(b) 80
(c) 100
(d) 120
[a] In the opposite figure :
$\overrightarrow{\mathrm{AD}}$ is a tangent to the circle $\mathrm{M}, \overline{\mathrm{AC}}$ intersects the circle at B, C , E is the midpoint of $\overline{\mathrm{BC}}$
, $m(\angle \mathrm{~A})=65^{\circ}$

Find : m (\angle DME)
[b] If the length of $\overline{\mathrm{AB}}=6 \mathrm{~cm}$., draw a circle of radius length 4 cm . that passes through A, B How many circles can be drawn ? (Don't remove the arcs).

3 [a] In the opposite figure :
A circle $\mathrm{M}, \mathrm{m}(\angle \mathrm{A})=30^{\circ}$
1 Find: $\mathrm{m}(\angle \mathrm{BMC})$
(2) Prove that: MBC is an equilateral triangle.

[b] In the opposite figure :
A circle $\mathrm{M}, \overline{\mathrm{AD}} / / \overline{\mathrm{BC}}$
, $\overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$
, $\overline{\mathrm{MY}} \perp \overline{\mathrm{DC}}$
Prove that : MX $=$ MY

4] [a] In the opposite figure :
$\overrightarrow{\mathrm{CB}}$ is a tangent, $\mathrm{m}(\overparen{\mathrm{BE}})=\mathrm{m}(\widehat{\mathrm{EF}})$
Prove that : $A B C D$ is a cyclic quadrilateral.

[b] In the opposite figure :
$\overrightarrow{\mathrm{XY}}, \overrightarrow{\mathrm{XZ}}$ are two tangents to the circle at Y, Z
, $\mathrm{YZ}=\mathrm{LZ}, \mathrm{m}(\angle \mathrm{L})=70^{\circ}$
1 Find with proof : $m(\angle X)$
(2) Prove that : $\overline{\mathrm{XZ}} / / \overline{\mathrm{YL}}$

5 [a] ABCD is a parallelogram in which $\mathrm{AC}=\mathrm{BC}$
Prove that : $\overleftrightarrow{\mathrm{CD}}$ is a tangent to the circle circumscribed about the triangle ABC
[b] In the opposite figure :
LMNE is a cyclic quadrilateral, $\mathrm{m}(\angle \mathrm{MEN})=35^{\circ}$
, $\mathrm{m}(\angle \mathrm{MLE})=80^{\circ}$
Find with proof :
$1 \mathrm{~m}(\angle \mathrm{MLN})$
2) $\mathrm{m}(\angle \mathrm{EMN})$

13)
 Kafr El-Sheikh Governorate

Answer the following questions: (Calculator is allowed)

1 Choose the correct answer from those given :

1 The triangle contains two
angles at least.
(a) acute
(b) obtuse
(c) right
(d) reflex
(2) ABCD is a rhombus in which $\mathrm{m}(\angle \mathrm{ACB})=32^{\circ}$, then $\mathrm{m}(\angle \mathrm{D})=$
(a) 32°
(b) 64°
(c) 116°
(d) 26°
(3) A tangent to a circle of diameter length 6 cm . is at a distance of cm . from its center.
(a) 6
(b) 12
(c) 3
(d) 2

4 If M, N are two touching circles internally their radii lengths are $8 \mathrm{~cm} ., 3 \mathrm{~cm}$. , then $\mathrm{MN}=$ \qquad cm .
(a) 3
(b) 5
(c) 7
(d) 11

5 The triangle whose side lengths are 5 cm ., 7 cm . and 8 cm . is \qquad
(a) obtuse-angled.
(b) acute-angled.
(c) right-angled.
(d) equilateral.

6 The number of common tangents to two touching circles externally is
(a) 0
(b) 1
(c) 2
(d) 3

[a] In the opposite figure :

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{BC}}$ are two chords in the circle M , which has radius length of 10 cm .
,$\overline{\mathrm{MX}} \perp \overline{\mathrm{BC}}$ intersecting $\overline{\mathrm{BC}}$ at X and intersecting the circle M at E
, D is the midpoint of $\overline{\mathrm{AB}}, \mathrm{BC}=16 \mathrm{~cm}$.

, $m(\angle \mathrm{DMX})=110^{\circ}$
Find : 1 The length of $\overline{\mathrm{XE}}$
(2) $\mathrm{m}(\angle \mathrm{ABC})$

Klnonnuls

[b] In the opposite figure :

B is a point outside the circle M
, $\overrightarrow{\mathrm{BA}}$ is a tangent to the circle M at A
, $\overrightarrow{\mathrm{BM}}$ intersects the circle at E and $\mathrm{D}, \mathrm{m}(\angle \mathrm{B})=20^{\circ}$
Find with proof : m ($\angle \mathrm{ADB}$)

3 [a] In the opposite figure :
$\overline{\mathrm{AB}} \cap \overline{\mathrm{CD}}=\{\mathrm{E}\}$
, $\overline{\mathrm{AD}} / / \overline{\mathrm{CB}}$
Prove that : EA = ED

[b] In the opposite figure :
$\overrightarrow{\mathrm{EA}}$ and $\overrightarrow{\mathrm{EB}}$ are two tangents to the circle at A, B
, $m(\angle \mathrm{AEB})=50^{\circ}$
, $\mathrm{m}(\angle \mathrm{ADC})=115^{\circ}$

Prove that :

$\overleftrightarrow{\mathrm{AC}}$ is a tangent to the circle passing through the points A, B and E
4 [a] In the opposite figure :
$\mathrm{E} \in \overrightarrow{\mathrm{CB}}, \mathrm{m}(\widehat{\mathrm{AB}})=100^{\circ}$
, $\mathrm{m}(\angle \mathrm{ABE})=110^{\circ}$
Find with proof : $m(\angle B D C)$

[b] In the opposite figure :
$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ are two tangents to the circle M at B, C
,$\overline{\mathrm{FE}}$ is a tangent-segment at $\mathrm{D}, \mathrm{DF}=4 \mathrm{~cm}$.
, $\mathrm{AF}=10 \mathrm{~cm}$. $\mathrm{AE}=9 \mathrm{~cm}$.
Find with proof : The length of $\overline{\mathrm{EC}}$

5 [a] In the opposite figure :
ABC is an inscribed triangle inside the circle M , $\mathrm{MX}=\mathrm{MY}, \mathrm{X}$ and Y are the midpoints of $\overline{\mathrm{AB}}$, $\overline{\mathrm{AC}}$ respectively, $\mathrm{m}(\angle \mathrm{B})=70^{\circ}$
Find with proof : $m(\angle A)$

[b] ABC is an inscribed triangle in a circle where $\mathrm{AB}>\mathrm{AC}$ and $\mathrm{D} \in \overline{\mathrm{AB}}$ where $\mathrm{AC}=\mathrm{AD}$, $\overrightarrow{\mathrm{AE}}$ bisects $\angle \mathrm{A}$ and intersects $\overline{\mathrm{BC}}$ at E and intersects the circle at F

Prove that : BDEF is a cyclic quadrilateral.

Final Examinations

14 El-Beheira Governorate

Answer the following questions: (Calculator is permitted)

1 Choose the correct answer from the given ones :
1 M and N are two intersecting circles, their radii lengths are 3 cm . and 5 cm ., then $M N \in$ \qquad
(a) $] 8, \infty[$
(b) $] 2, \infty[$
(c) $] 0,2[$
(d) $] 2,8[$
(2) ABCD is a cyclic quadrilateral, $\mathrm{m}(\angle \mathrm{A})=70^{\circ}$, then $\mathrm{m}(\angle \mathrm{C})$ equals
(a) 25°
(b) 20°
(c) 110°
(d) 100°

3 The measure of the inscribed angle drawn in a semicircle equals
(a) 130°
(b) 90°
(c) 50°
(d) 180°

4 The slope of the straight line $3 x+2 y=1$ is
(a) $\frac{2}{3}$
(b) $-\frac{3}{2}$
(c) $-\frac{2}{3}$
(d) $\frac{3}{2}$

5 The measurement of any angle of the regular hexagon is
(a) 90°
(b) 108°
(c) 120°
(d) 135°
6. In $\triangle \mathrm{ABC}$, if $(\mathrm{AB})^{2}=(\mathrm{AC})^{2}+(\mathrm{BC})^{2}$, then $\angle \mathrm{B}$ is
(a) acute.
(b) obtuse.
(c) right.
(d) reflex.

2 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle M
, X is the midpoint of $\overline{\mathrm{AC}}$ and $\overrightarrow{\mathrm{XM}}$ intersects the tangent to the circle at B in Y
Prove that : The figure AXBY is a cyclic quadrilateral.

[b] In the opposite figure :

$\overline{\mathrm{AB}}$ is a chord in the circle M
, $\overline{\mathrm{CM}} / / \overline{\mathrm{AB}}, \overline{\mathrm{BC}} \cap \overline{\mathrm{AM}}=\{\mathrm{E}\}$
, $m(\angle A)=60^{\circ}$
Find : $m(\angle B)$

3 [a] In the opposite figure :
The triangle $A B C$ is inscribed in the circle M
, in which: $m(\angle B)=m(\angle C)$
, X is the midpoint of $\overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
Prove that : $\mathrm{MX}=\mathrm{MY}$

Klnonnuls

[b] In the opposite figure :

$A B C D E$ is a regular pentagon inscribed in a circle M
, $\overleftrightarrow{A X}$ is a tangent to the circle at A
, $\overleftrightarrow{E X}$ is a tangent to the circle at E
where $\overleftrightarrow{A X} \cap \overleftrightarrow{E X}=\{X\}$
Find: $1 \mathrm{~m}(\widehat{\mathrm{AE}})$
(2) m ($\angle \mathrm{AXE})$

[a] In the opposite figure :
$\overline{\mathrm{AB}}$ is a chord in the circle M
, $\overrightarrow{\mathrm{AC}}$ bisects $\angle \mathrm{BAM}$ and intersects the circle M at C If D is the midpoint of $\overline{A B}$, prove that : $\overline{\mathrm{DM}} \perp \overline{\mathrm{CM}}$

[b] $\overline{\mathrm{AB}}$ is a diameter in the circle $\mathrm{M}, \stackrel{\mathrm{AC}}{ }$ and $\overleftrightarrow{\mathrm{BD}}$ are two tangents to the circle $\mathrm{M}, \overrightarrow{\mathrm{CM}}$ intersects the circle M at X and Y and intersects $\overleftrightarrow{B D}$ at E Prove that : CX $=Y E$

5 [a] In the opposite figure :
$\overrightarrow{\mathrm{XA}}$ and $\overrightarrow{\mathrm{XB}}$ are two tangents to the circle at A and B
, $\mathrm{m}(\angle \mathrm{AXB})=50^{\circ}, \mathrm{m}(\angle \mathrm{DCB})=115^{\circ}$
Prove that : $1 \overrightarrow{\mathrm{AB}}$ bisects $\angle \mathrm{DAX}$
(2) $\mathrm{BD}=\mathrm{BA}$

[b] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ are two equal chords in length in the circle
, $\overline{\mathrm{AB}} \cap \overline{\mathrm{CD}}=\{\mathrm{E}\}$
Prove that : The triangle ACE is an isosceles triangle.

15) El-Fayoum Governorate

Answer the following questions : (Using calculators is allowed)
1 Choose the correct answer :
1 If M is a circle of diameter length 8 cm ., the straight line L is far from the centre M of the circle by 4 cm ., then the straight line L is .
(a) a secant to the circle in two points.
(b) outside the circle.
(c) a tangent to the circle.
(d) an axis of symmetry of the circle.
(2) If $\mathrm{m}_{1}, \mathrm{~m}_{2}$ are the slopes of two perpendicular straight lines, then
(a) $m_{1}=m_{2}$
(b) $m_{1} \times m_{2}=-1$
(c) $\mathrm{m}_{1} \times \mathrm{m}_{2}=1$
(d) $m_{1}+m_{2}=-1$

3 The centre of the circle that passes through the vertices of the triangle is the intersection point of \qquad ...
(a) the bisectors of its interior angles.
(b) the bisectors of its exterior angles.
(c) its altitudes.
(d) the axes of its sides.
(4) ABC is a right-angled triangle at $\mathrm{B}, \mathrm{m}(\angle \mathrm{C})=30^{\circ}, \mathrm{AC}=12 \mathrm{~cm}$. , then $\mathrm{AB}=$ \qquad cm .
(a) 24
(b) $12 \sqrt{3}$
(c) $6 \sqrt{3}$
(d) 6

5 Which of the following figures is a cyclic quadrilateral?
(a) The rectangle.
(b) The trapezium.
(c) The rhombus.
(d) The parallelogram.

6 A trapezium in which the lengths of the two parallel bases are 4 cm . and 12 cm . and its height is 9 cm ., then its area $=$ \qquad cm^{2}.
(a) 25
(b) 36
(c) 72
(d) 144

2 [a] In the opposite figure :
$\mathrm{AB}=\mathrm{CD}, \mathrm{MO}=6 \mathrm{~cm}$.
, $\mathrm{ME}=(\chi+2) \mathrm{cm}$.
, $\mathrm{CD}=(3 x+4) \mathrm{cm}$.
Find: The value of x, CD

[b] ABC is a triangle drawn inside a circle $\mathrm{M}, \mathrm{m}(\angle \mathrm{AMB})=90^{\circ}, \mathrm{m}(\angle \mathrm{BMC})=130^{\circ}$ Find: The measures of the angles of $\triangle \mathrm{ABC}$

3 [a] A is a point outside the circle $\mathrm{M}, \overrightarrow{\mathrm{AB}}$ is a tangent to the circle at $\mathrm{B}, \overrightarrow{\mathrm{AM}}$ intersects the circle M at C and D respectively, $m(\angle A)=40^{\circ}$

Find with proof : m ($\angle B D C$)

[b] In the opposite figure :

$\overline{\mathrm{AB}}$ is a diameter in the circle M
, X is the midpoint of $\overline{\mathrm{AC}}$ and $\overrightarrow{\mathrm{XM}}$ intersects the tangent to the circle at B at Y Prove that : The figure AXBY is a cyclic quadrilateral.

Klmon mils

4] [a] In the opposite figure :
Two concentric circles with centre M
, the radii lengths of them are 4 cm . and 2 cm .
,$\triangle \mathrm{ABC}$ is an inscribed triangle inside the greater circle
, and its sides touch the smaller circle at $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$

Prove that : $\triangle \mathrm{ABC}$ is an equilateral triangle, and calculate its area.
[b] In the opposite figure :
$\overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments to the circle M
, $\overline{\mathrm{AB}} / / \overline{\mathrm{CD}}$
, $\mathrm{m}(\angle \mathrm{BMD})=130^{\circ}$
Prove that : $\overrightarrow{\mathrm{CB}}$ bisects $\angle \mathrm{ACD}$

5 [a] $\triangle \mathrm{ABC}$ is a triangle inscribed in a circle, $\overrightarrow{\mathrm{AD}}$ is a tangent to the circle at $\mathrm{A}, \mathrm{X} \in \overrightarrow{\mathrm{AB}}$ and $\mathrm{Y} \in \overline{\mathrm{AC}}$, where $\overline{\mathrm{XY}} / / \overline{\mathrm{BC}}$
Prove that : $\overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the points A, X and Y

[b] In the opposite figure :

$\overline{\mathrm{AB}}$ is a diameter in the circle M ,
X is the midpoint of $\overrightarrow{\mathrm{AC}}, \overrightarrow{\mathrm{BD}}$ is a tangent to
the circle at $B, \overrightarrow{X M}$ intersects the circle at Y
Prove that : 1 XMBD is a cyclic quadrilateral.

$$
\text { (2) } \mathrm{m}(\angle \mathrm{BAY})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{D})
$$

16
Beni Suef Governorate

Answer the following questions: (Calculator is allowed)
1 Choose the correct answer from those given :
1 The symmetry axis of the common chord $\overline{\mathrm{AB}}$ of the two intersecting circles M , N is
(a) $\overleftrightarrow{M A}$
(b) $\overleftrightarrow{\mathrm{MB}}$
(c) $\overleftrightarrow{\mathrm{MN}}$
(d) $\stackrel{\leftrightarrow}{N A}$
(2) ABC is a triangle in which : $(\mathrm{AC})^{2}>(\mathrm{AB})^{2}+(\mathrm{BC})^{2}$, then $\angle \mathrm{B}$ is
(a) acute.
(b) obtuse.
(c) right.
(d) straight.

3 In the cyclic quadrilateral, each two opposite angles are
(a) equal in measure.
(b) complementary.
(c) supplementary.
(d) alternate.

Klnon wirs
(4) The area of a triangle is $35 \mathrm{~cm}^{2}$. and its height is 7 cm ., then the length of its base equals \qquad cm .
(a) 5
(b) 7
(c) 10
(d) 20

5 The measure of the inscribed angle which is drawn in a semicircle equals
(a) 45°
(b) 90°
(c) 120°
(d) 180°
(6) The area of a square is $100 \mathrm{~cm}^{2}$, then its perimeter $=$ cm.
(a) 10
(b) 30
(c) 40
(d) 50

2] [a] In the opposite figure:

$\overline{\mathrm{AB}}$ is a chord in the circle M
, $\overline{\mathrm{MC}} \perp \overline{\mathrm{AB}}, \mathrm{m}(\angle \mathrm{ADB})=70^{\circ}$
Find : m ($\angle \mathrm{AMC}$)
[b] In the opposite figure :
M and N are two congruent circles
, $\mathrm{AB}=\mathrm{CD}, \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$ and $\overline{\mathrm{NY}} \perp \overline{\mathrm{CD}}$
Prove that : The figure MXYN is a rectangle.

3 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords in the circle M, D is the midpoint of $\overline{\mathrm{AB}}$
, E is the midpoint of $\overline{\mathrm{AC}}$ and $\mathrm{m}(\angle \mathrm{BAC})=50^{\circ}$

Find : m ($\angle \mathrm{DME}$)

4 [a] In the opposite figure :

$\overleftrightarrow{\mathrm{ED}}$ is a tangent to the circle M at C
, $\overleftrightarrow{\mathrm{ED}} / / \overline{\mathrm{AB}}$ and $\mathrm{m}(\angle \mathrm{AMB})=120^{\circ}$
Prove that : The triangle $C A B$ is an equilateral triangle.

Geometry

[b] In the opposite figure :
$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ are two tangents to the circle at B and C , $\mathrm{m}(\angle \mathrm{BDC})=70^{\circ}$

Find: $m(\angle A)$

5 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent-segments to the circle at B and $\mathrm{C}, \mathrm{BC}=\mathrm{BD}$
Prove that :

$\overleftrightarrow{\mathrm{BD}}$ is a tangent to the circle passing through the vertices of $\triangle \mathrm{ABC}$
[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle M
, $\overleftrightarrow{\mathrm{BC}}$ is a tangent to the circle
at B and E is the midpoint of $\overline{\mathrm{AD}}$
Prove that : The figure EMBC is a cyclic quadrilateral.

17
 El-Menia Governorate

Answer the following questions: (Calculator is allowed)

1 Choose the correct answer from those given :
1 It is possible to draw a circle passing through the vertices of a
(a) rhombus.
(b) rectangle.
(c) right trapezium.
(d) parallelogram.
(2) The inscribed angle drawn in a semicircle is
(a) acute.
(b) obtuse.
(c) straight.
(d) right.

3 The number of rectangles in the opposite figure is \qquad

(a) 3
(b) 6
(c) 7
(d) 10
\square
(4) If the perimeter of a square is 20 cm ., then its surface area is
(a) 20
(b) 25
(c) 50
(d) 100
(5) The measure of the exterior angle of an equilateral triangle equals \qquad
(a) 60
(b) 108
(c) 120
(d) 135
6. If ABCD is a cyclic quadrilateral , $2 \mathrm{~m}(\angle \mathrm{~A})=120^{\circ}$, then $\mathrm{m}(\angle \mathrm{C})=$。
(a) 120
(b) 45
(c) 60
(d) 90

2 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords equal in length in
the circle M, X is the midpoint of $\overline{\mathrm{AB}}$
and Y is the midpoint of $\overline{\mathrm{AC}}$

Prove that : $\mathrm{XE}=\mathrm{YD}$

3 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{BC}}$ are two chords in the circle M
which has radius length of $5 \mathrm{~cm} ., \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$
, X is the midpoint of $\overline{\mathrm{BC}}$
, $\mathrm{AB}=8 \mathrm{~cm}$., $\mathrm{m}(\angle \mathrm{B})=56^{\circ}$
Find: $1 \mathrm{~m}(\angle \mathrm{DMX})$
[b] In the opposite figure :
$\overrightarrow{\mathrm{AD}}$ is a tangent to the circle at A
, $\mathrm{X} \in \overline{\mathrm{AB}}, \mathrm{Y} \in \overline{\mathrm{AC}}$ where $\overline{\mathrm{XY}} / / \overline{\mathrm{BC}}$
Prove that :
$\overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the points A, X and Y
(2) The length of $\overline{\mathrm{DE}}$

ABCD is a quadrilateral, $\mathrm{AB}=\mathrm{AD}$
, $\mathrm{m}(\angle \mathrm{ABD})=30^{\circ}$
, $\mathrm{m}(\angle \mathrm{C})=60^{\circ}$
Prove that : ABCD is a cyclic quadrilateral.

[a] In the opposite figure :
$\mathrm{AB}=\mathrm{AC}$
, $\mathrm{E} \in \overparen{\mathrm{BC}}$
Prove that : $\mathrm{m}(\angle \mathrm{AEB})=\mathrm{m}(\angle \mathrm{AEC})$

[b] In the opposite figure :

$\overrightarrow{\mathrm{XA}}$ and $\overrightarrow{\mathrm{XB}}$ are two tangents to the circle at A and B
, $m(\angle A X B)=70^{\circ}$
, $\mathrm{m}(\angle \mathrm{DCB})=125^{\circ}$
Prove that : $\mathrm{m}(\angle \mathrm{DAB})=\mathrm{m}(\angle \mathrm{XAB})$

Klnondus

5] [a] In the opposite figure :

$\overline{\mathrm{AB}}$ is a chord in the circle M
,$\overline{\mathrm{MC}} \perp \overline{\mathrm{AB}}$
Prove that: $m(\angle A M C)=m(\angle A D B)$

[b] $A B C$ is an inscribed triangle in a circle M where $A B>A C$ and $D \in \overline{A B}$ where $\mathrm{AC}=\mathrm{AD}, \overrightarrow{\mathrm{AE}}$ bisects $\angle \mathrm{A}$ and intersects $\overline{\mathrm{BC}}$ at E and intersects the circle at F Prove that : BDEF is a cyclic quadrilateral.

18
 Assiut Governorate

Answer the following questions : (Calculator is permitted)

1 Choose the correct answer :

1 XYZ is a triangle in which : D is the midpoint of $\overline{\mathrm{XY}}, \mathrm{E}$ is the midpoint of $\overline{\mathrm{XZ}}$, then $\mathrm{DE}=$ \qquad
(a) $\frac{1}{4}$
(b) $\frac{1}{3}$
(c) $\frac{1}{2}$
(d) 2
(2) The diameter is a passing through the center of the circle.
(a) straight line
(b) ray
(c) tangent
(d) chord

3 If the circumference of a circle is $18 \pi \mathrm{~cm}$., then its radius length $=$ \qquad
(a) 7
(b) 9
(c) 3
(d) 6

4 In the opposite figure :
ABCD is a cyclic quadrilateral
, $\mathrm{m}(\angle \mathrm{BAC})=60^{\circ}$
, then $\mathrm{m}(\angle \mathrm{BDC})=$ \qquad
(a) 300°
(b) 120°
(c) 60°
(d) 30°

(5) The area of the triangle which the length of its base is 9 cm ., its height is 12 cm . equals cm^{2}
(a) 48
(b) 24
(c) 36
(d) 54

6 In the opposite figure :
$\overline{\mathrm{AC}}$ is a diameter in the circle M
, $m(\angle C)=30^{\circ}$
, then $\mathrm{m}(\angle \mathrm{A})=$
(a) 120°
(b) 60°
(c) 90°
(d) 40°

2] [a] In the opposite figure :

M and N are two intersecting circles at A and B
$, \mathrm{C} \in \overrightarrow{\mathrm{AB}}, \overline{\mathrm{AC}} \cap \overline{\mathrm{MN}}=\{\mathrm{E}\}$
, $\mathrm{D} \in$ the circle $\mathrm{N}, \mathrm{m}(\angle \mathrm{DNM})=140^{\circ}$
and $m(\angle C)=40^{\circ}$
Prove that : $\overrightarrow{\mathrm{CD}}$ is a tangent to the circle N at D

[b] In the opposite figure :
ABCD is a rectangle inscribed in a circle
, the chord $\overline{\mathrm{CE}}$ is drawn
where $C E=C D$
Prove that : $\mathrm{AE}=\mathrm{BC}$

3 [a] State two cases of the cyclic quadrilateral.

[b] In the opposite figure :

$\overrightarrow{\mathrm{XY}}, \overrightarrow{\mathrm{XZ}}$ are two tangents to the circle at Y, Z
, $\mathrm{m}(\angle \mathrm{D})=115^{\circ}$
and $m(\angle X)=50^{\circ}$
Prove that : $\mathrm{ZE}=\mathrm{ZY}$

4 [a] In the opposite figure :
$A B C$ is a triangle inscribed in the circle M , in which $\mathrm{m}(\angle B)=\mathrm{m}(\angle C)$
, X is the midpoint of $\overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
Prove that : MX $=$ MY

5] [a] In the opposite figure :
ABC is a triangle, $\mathrm{CB}=\mathrm{AC}$
, $m(\angle \mathrm{DAB})=130^{\circ}$
, $m(\angle B)=65^{\circ}$

Prove that :

$\overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the vertices of the triangle $A B C$

Klnonnuls
[b] In the opposite figure :
$A B C$ is a triangle inscribed in a circle
, $\overleftrightarrow{B D}$ is a tangent to the circle at B
, $\mathrm{X} \in \overline{\mathrm{AB}}, \mathrm{Y} \in \overline{\mathrm{BC}}$
where $\overline{\mathrm{XY}} / / \overleftrightarrow{\mathrm{BD}}$
Prove that : AXYC is a cyclic quadrilateral.

19)
 Souhag Governorate

Answer the following questions: (Calculator is permitted)

1 Choose the correct answer :

11 If the straight line L is a tangent to the circle M of diameter length 8 cm ., then the distance between L and the center of the circle equals \qquad cm.
(a) 3
(b) 4
(c) 6
(d) 8
(2) The area of the rhombus $=$ of the product of the lengths of its diagonals.
(a) 2
(b) $\frac{1}{3}$
(c) $\frac{1}{2}$
(d) 3

3 The number of symmetry axes of any circle is
(a) zero
(b) 1
(c) 2
(d) an infinite number.
(4) In the opposite figure :

The triangle $A B C$ is an equilateral triangle
, then $\mathrm{m}(\angle \mathrm{ACD})=$
(a) 45
(b) 60
(c) 120
(d) 135

5 If the lengths of two sides of an isosceles triangle are 2 cm . and $(X+3) \mathrm{cm}$., and the length of the third side is 5 cm ., then $\chi=$ cm .
(a) 1
(b) 2
(c) 3
(d) 4

6 If M,N are two touching circles internally, their radii lengths are $5 \mathrm{~cm} ., 9 \mathrm{~cm}$.
, then $\mathrm{MN}=$ \qquad cm.
(a) 14
(b) 4
(c) 5
(d) 9

2] [a] In the opposite figure :
M is a circle with radius length 7 cm .
, $\mathrm{m}(\angle \mathrm{AMB})=90^{\circ}$
Find : The length of $\overparen{A B}\left(\pi=\frac{22}{7}\right)$

[b] In the opposite figure :
$\overline{\mathrm{AD}}$ is a diameter in the circle M
, $\overleftrightarrow{A B}$ is a tangent, $m(\angle B)=50^{\circ}$
, E is the midpoint of $\overline{\mathrm{DC}}$
Find : m ($\angle \mathrm{EMA}$)

3 [a] State two cases of the cyclic quadrilateral.
[b] In the opposite figure :
$\mathrm{E} \in \overrightarrow{\mathrm{AB}}, \mathrm{E} \notin \overrightarrow{\mathrm{AB}}$
, $\mathrm{m}(\widehat{\mathrm{AB}})=110^{\circ}$
, $\mathrm{m}(\angle \mathrm{CBE})=85^{\circ}$
Find : $m(\angle B D C)$

4 [a] In the opposite figure :
$\overleftrightarrow{\mathrm{AB}}, \overleftrightarrow{\mathrm{CD}}$ are common external tangents to the two circles M and $N, \overrightarrow{A B} \cap \overrightarrow{C D}=\{F\}$
Prove that : $\mathrm{AB}=\mathrm{CD}$

[b] In the opposite figure :
A is a point outside the circle $M, \overrightarrow{A B}$ is a tangent to the circle at B , $\overrightarrow{\mathrm{AM}}$ intersects the circle M at C and D respectively , $m(\angle A)=40^{\circ}$
Find with proof : $m(\angle B D C)$

5 [a] In the opposite figure :
$A B=C D$
Find: 1 The value of x
(2) The length of $\overline{\mathrm{CD}}$

[b] In the opposite figure :
ABC is a triangle inscribed in a circle
, $\overleftrightarrow{\mathrm{BD}}$ is a tangent to the circle at $\mathrm{B}, \mathrm{X} \in \overline{\mathrm{AB}}$
, $\mathrm{Y} \in \overline{\mathrm{CB}}$ where $\overline{\mathrm{YX}} / / \overleftrightarrow{\mathrm{BD}}$
Prove that : AXYC is a cyclic quadrilateral.

20) Qena Governorate

Answer the following questions: (Calculators are permitted)

1 Choose the correct answer :

1 The measure of the inscribed angle in a semicircle is \qquad -
(a) 45
(b) 90
(c) 135
(d) 180
(2) The perimeter of a rhombus is 12 cm ., then the length of its side $=$ \qquad
(a) 3
(b) 4
(c) 6
(d) 8

3 If A and B are two points in the plane, $\mathrm{AB}=7 \mathrm{~cm}$., then the length of the diameter of the smallest circle passing through the two points A and B equals \qquad cm .
(a) 3
(b) 3.5
(c) 7
(d) 14

4) In the opposite figure :

$\overline{\mathrm{AB}}$ is a diameter of the circle $\mathrm{M}, \overline{\mathrm{CD}}$ is a tangent
, $\mathrm{AB}=14 \mathrm{~cm}$., $\mathrm{CD}=28 \mathrm{~cm}$.

, then the area of the shaded part =
cm^{2}
(a) 70
(b) 147
(c) 170
(d) 224

5 It is possible to draw a circle passing through the vertices of a
(a) rhombus.
(b) rectangle.
(c) trapezium.
(d) parallelogram.

6 In the opposite figure :
$\triangle A B C$ is right-angled at C
, $\overline{\mathrm{CD}}$ is a median, $\mathrm{CD}=5 \mathrm{~cm}$.
, then $\mathrm{AB}=$
cm .
(a) 4
(b) 6
(c) 8
(d) 10

[a] Find the length of the arc and its measure, which is opposite to an inscribed angle of measure 45° in a circle the length of its radius is 7 cm .

[b] In the opposite figure :

M and N are two circles touching externally at A
, $\overrightarrow{\mathrm{DA}}$ is a common tangent to the circles
, $\overrightarrow{\mathrm{DB}}$ is a tangent to the circle M at B
, $\overrightarrow{\mathrm{DC}}$ is a tangent to the circle N at C
Prove that : $\mathrm{DB}=\mathrm{DC}$

[3] In the opposite figure:
$\overline{\mathrm{AB}}$ is a diameter of the circle M
, D is the midpoint of $\widehat{\mathrm{AC}}$
, $\mathrm{m}(\angle \mathrm{ABC})=40^{\circ}$
Find: $1 \mathrm{~m}(\angle \mathrm{DAB})$
(2) $\mathrm{m}(\angle \mathrm{DCB})$

[b] In the opposite figure :

$\overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two chords in the circle M
, X and Y are the two midpoints of $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ respectively
, $\overrightarrow{\mathrm{YM}}$ and $\overrightarrow{\mathrm{XM}}$ intersect the circle at D and E
If $D E=r$ where r is the radius length of M
, find by proof: $m(\angle B A C)$

4 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle M
, $\mathrm{D} \in \overrightarrow{\mathrm{AB}}, \mathrm{D} \notin \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{DE}} \perp \overrightarrow{\mathrm{AB}}$
, $\mathrm{C} \in \overparen{\mathrm{AB}}, \overrightarrow{\mathrm{CB}} \cap \overrightarrow{\mathrm{DE}}=\{\mathrm{E}\}$
Prove that : ACDE is a cyclic quadrilateral

[b] In the opposite figure :
Two concentric circles of center M
, $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords in the greater
circle and tangents to the smaller circle at X and Y respectively.
Prove that: $A B=A C$

5 [a] In the opposite figure :
M and N are two intersecting circles at A and B
, $\overleftrightarrow{A D}$ is drawn to intersect the circle M at E and the circle N at $\mathrm{D}, \overleftrightarrow{\mathrm{AB}}$ is drawn to intersect the circle M
 at F and the circle N at $\mathrm{C}, \mathrm{m}(\angle \mathrm{BCD})=70^{\circ}$

1. Find: $m(\angle E F B)$
(2) Prove that: $\overline{\mathrm{CD}} / / \overline{\mathrm{EF}}$

[b] In the opposite figure :

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are tangent-segments to the circle at B and C , $\mathrm{m}(\angle \mathrm{BAC})=60^{\circ}, \mathrm{m}(\angle \mathrm{CDE})=120^{\circ}$
Prove that: $1 \triangle \mathrm{BCE}$ is an equilateral triangle.
(2) $\overline{\mathrm{AC}} / / \overline{\mathrm{BE}}$

Klland

Luxor Governorate

Answer the following questions :

1 Choose the correct answer :

1 The number of axes of symmetry of the rectangle is \qquad
(a) 1
(b) 2
(c) 3
(d) 4
(2) If M,N are two circles whose radii lengths are r_{1}, r_{2} and if $r_{1}-r_{2}<M N<r_{1}+r_{2}$, then the two circles are
(a) distant.
(b) concentric.
(c) intersecting.
(d) touching.

3 The length of the median drawn from the vertex of the right angle in the right-angled triangle equals \qquad the length of the hypotenuse.
(a) quarter
(b) twice
(c) half
(d) three quarters

4 The length of the arc subtending a central angle of measure 60° in a circle whose circumference is 24 cm . equals cm.
(a) 4
(b) 8
(c) 12
(d) 16

5 The measure of the exterior angle of the equilateral triangle is \qquad
(a) 30
(b) 60
(c) 90
(d) 120

6 In the opposite figure :
$\mathrm{AB}=\mathrm{BD}, \mathrm{m}(\angle \mathrm{ABD})=36^{\circ}$
, then $\mathrm{m}(\angle \mathrm{C})=$
(a) 140
(b) 108
(c) 70
(d) 54

2 [a] In the opposite figure :
$\mathrm{AB}=\mathrm{CD}, \overline{\mathrm{MH}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{ME}} \perp \overline{\mathrm{CD}}$
If $\mathrm{ME}=6 \mathrm{~cm}$. $\mathrm{MH}=(X+2) \mathrm{cm}$.
and $\mathrm{CD}=(3 x+4) \mathrm{cm}$.
, find : The value of x and the length of $\overline{\mathrm{AB}}$

[b] In the opposite figure :

$\overline{\mathrm{AM}} / / \overline{\mathrm{CD}}$
, $\mathrm{MD}=\mathrm{DB}, \mathrm{m}(\angle \mathrm{AMB})=90^{\circ}$
Find : $\mathrm{m}(\widehat{\mathrm{AC}})$

にlan wirs

3 [a] In the opposite figure :
$\overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent segments drawn to the circle from A at B, C respectively, $\mathrm{m}(\angle \mathrm{A})=50^{\circ}$
Find : $m(\angle A C B), m(\angle B C M)$

[b] In the opposite figure :
$m(\widehat{\mathrm{AX}})=\mathrm{m}(\widehat{\mathrm{AY}})$
Prove that :
1 DBCH is a cyclic quadrilateral.
(2) $\mathrm{m}(\angle \mathrm{DHB})=\mathrm{m}(\angle \mathrm{XAB})$

[a] Draw $\overline{\mathrm{AB}}$ of length 3 cm ., then draw a circle passing by the two points A , B whose radius length is 2 cm . How many possible solutions are there?
[b] In the opposite figure :
$\overline{\mathrm{BD}} / / \overleftrightarrow{\mathrm{XY}}$
Prove that : $1 \overrightarrow{\mathrm{AC}}$ bisects $\angle \mathrm{BAD}$
(2) $\overleftrightarrow{B C}$ is a tangent to the circle passing by the vertices of $\triangle \mathrm{ABH}$

5 [a] In the opposite figure :
ABCD is a parallelogram
Prove that : HDCE is a cyclic quadrilateral
[b] In the opposite figure :

$m(\angle \mathrm{M})=50^{\circ}$
, $m(\angle C)=100^{\circ}$
Find : $m(\angle A)$

22)

Aswan Governorate

Answer the following questions: (Calculator is allowed)

1 Choose the correct answer from those given :

1 The measure of the inscribed angle drawn in a semicircle equals
(a) 45°
(b) 180°
(c) 120°
(d) 90°
(2) The number of symmetry axes of the isosceles triangle is
(a) zero
(b) 1
(c) 2
(d) 3
(3) The surface of the circle $M \cap$ the surface of the circle $N=\{A\}$ and the radius length of one of them is 3 cm . and $\mathrm{MN}=8 \mathrm{~cm}$., then the radius length of the other circle equals \qquad cm.
(a) 5
(b) 6
(c) 11
(d) 16

4 The measure of the exterior angle of the equilateral triangle equals
(a) 30°
(b) 60°
(c) 120°
(d) 180°

5 The line segment joining the two midpoints of two sides of the triangle is the third side.
(a) perpendicular to
(b) parallel to
(c) bisecting
(d) equal to
6. If ABCD is a cyclic quadrilateral, then $\mathrm{m}(\angle \mathrm{A})+\mathrm{m}(\angle \mathrm{C})-80^{\circ}=$ \qquad
(a) 60°
(b) 80°
(c) 100°
(d) 120°

2] [a] In the opposite figure :

$\overleftrightarrow{\mathrm{AB}}$ is a tangent to the circle M at A
, $\mathrm{MA}=6 \mathrm{~cm}$. $\mathrm{AB}=8 \mathrm{~cm}$.
Find : The length of $\overline{\mathrm{BD}}$

[b] In the opposite figure :
ABCD is a cyclic quadrilateral
, $\overrightarrow{\mathrm{BF}} / / \overline{\mathrm{DC}}, \mathrm{m}(\angle \mathrm{BAD})=120^{\circ}$
, $\mathrm{m}(\angle \mathrm{EBF})=55^{\circ}$
Find : $m(\angle B C D), m(\angle A D C)$

3 [a] In the opposite figure :

In the circle M
, $\mathrm{MD}=\mathrm{ME}, \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}}$
, $\overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}, \mathrm{m}(\angle \mathrm{ABC})=65^{\circ}$
Find: $m(\angle B A C)$

[b] In the opposite figure :
$\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to the circle at B and C
, $\mathrm{m}(\angle \mathrm{A})=50^{\circ}, \mathrm{m}(\angle \mathrm{CDE})=115^{\circ}$
Prove that : $\overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABE}$

Klland

4 [a] In the opposite figure :

ABCD is a rectangle inscribed in a circle, the chord $\overline{\mathrm{CE}}$ is drawn
where $C E=C D$
Prove that : $\mathrm{AE}=\mathrm{BC}$

[b] In the opposite figure :

$A B C$ is a triangle inscribed in a circle
, $\overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle at A
, $\mathrm{X} \in \overline{\mathrm{AB}}, \mathrm{Y} \in \overline{\mathrm{AC}}, \overline{\mathrm{XY}} / / \overline{\mathrm{BC}}$

Prove that :

$\overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the vertices of $\triangle \mathrm{AXY}$

5 [a] In the opposite figure :

$\overline{\mathrm{AC}}, \overline{\mathrm{DB}}$ are two parallel chords in the circle M
, $\mathrm{m}(\angle \mathrm{AMB})=140^{\circ}$
Find : $m(\angle D), m(\angle D A C)$
[b] In the opposite figure :
$\mathrm{AB}=\mathrm{AD}, \mathrm{m}(\angle \mathrm{ABD})=30^{\circ}$
, $\mathrm{m}(\angle \mathrm{DCE})=120^{\circ}$
Prove that : $A B C D$ is a cyclic quadrilateral.

(23) New Valley Governorate

Answer the following questions: (Calculator is allowed)

1 Choose the correct answer from those given :

1 If two polygons are similar and the ratio between the lengths of two corresponding sides is $1: 3$ and the perimeter of the smaller polygon is 15 cm ., then the perimeter of the greater polygon is \qquad cm .
(a) 30
(b) 45
(c) 60
(d) 75
(2) The inscribed angle drawn in a semicircle is \qquad
(a) acute.
(b) obtuse.
(c) straight.
(d) right,
(3) ABC is a right-angled triangle at $\mathrm{B}, \overline{\mathrm{BD}} \perp \overline{\mathrm{AC}}$, then the projection of $\overline{\mathrm{BD}}$ on $\overleftarrow{\mathrm{AC}}$ is
(a) A
(b) B
(c) C
(d) D

Rnlon wirs
(4) A tangent to a circle of diameter length 6 cm . is at a distance of
cm. from its center.
(a) 6
(b) 12
(c) 3
(d) 2

5 In the opposite figure :
If $m(\angle A M B)=(y+10)^{\circ}$
, $\mathrm{m}(\angle \mathrm{C})=40^{\circ}$
, then $\mathrm{y}=$ \qquad
(a) 70°
(b) 80°
(c) 100°
(d) 180°

6 In the opposite figure :
$\overline{\mathrm{AD}} / / \overline{\mathrm{BC}}, \mathrm{m}(\angle \mathrm{BAD})=\mathrm{m}(\angle \mathrm{BMC})=90^{\circ}$
, $\mathrm{AD}=4 \mathrm{~cm}$., $\mathrm{BC}=9 \mathrm{~cm}$.
, then the area of the trapezium $\mathrm{ABCD}=$ \qquad cm^{2}
(a) 26
(b) 39
(c) 52
(d) 65

2 [a] In the opposite figure :
$\mathrm{m}(\angle \mathrm{ABE})=100^{\circ}$
, $\mathrm{m}(\angle \mathrm{CAD})=40^{\circ}$
Prove that : $m(\overparen{C D})=m(\widehat{A D})$

[b] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords equal
in length in the circle M, X is the midpoint of $\overline{A B}$
, Y is the midpoint of $\overline{\mathrm{AC}}, \mathrm{m}(\angle \mathrm{CAB})=70^{\circ}$
1 Calculate : m ($\angle \mathrm{DMH}$)
(2) Prove that: $\mathrm{XD}=\mathrm{YH}$

3 [a] In the opposite figure :
ABC is a triangle inscribed in a circle
, $\overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle at A
, $\mathrm{X} \in \overline{\mathrm{AB}}, \mathrm{Y} \in \overline{\mathrm{AC}}$ where $\overline{\mathrm{XY}} / / \overline{\mathrm{BC}}$

Prove that : $\overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the points A, X and Y

[b] In the opposite figure :

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent-segments to the circle M
, $\overline{\mathrm{AB}} / / \overline{\mathrm{CD}}, \mathrm{m}(\angle \mathrm{BMD})=130^{\circ}$
1 Prove that : $\overrightarrow{\mathrm{CB}}$ bisects $\angle \mathrm{ACD}$
(2) Find:m $(\angle \mathrm{A})$

4 [a] In the opposite figure :
$A B C$ is an inscribed triangle inside a circle
, $\overline{\mathrm{DE}} / / \overline{\mathrm{BC}}$
Prove that : $\mathrm{m}(\angle \mathrm{DAC})=\mathrm{m}(\angle \mathrm{BAE})$

[b] $A B C$ is a triangle inscribed in a circle $, X \in \overparen{A B}, Y \in \overparen{A C}$
where $m(\widehat{\mathrm{AX}})=m(\widehat{\mathrm{AY}}), \overline{\mathrm{CX}} \cap \overline{\mathrm{AB}}=\{\mathrm{D}\}, \overline{\mathrm{BY}} \cap \overline{\mathrm{AC}}=\{\mathrm{E}\}$
Prove that : 1 BCED is a cyclic quadrilateral.

$$
2 \mathrm{~m}(\angle \mathrm{DEB})=\mathrm{m}(\angle \mathrm{XAB})
$$

5 [a] State two cases of the cyclic quadrilateral.
[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a chord in the circle M and $\overline{\mathrm{CD}}$ is the perpendicular diameter on $\overline{\mathrm{AB}}$ and intersects it at E , $\overrightarrow{\mathrm{BM}}$ intersects the circle at X and $\overline{\mathrm{XD}} \cap \overline{\mathrm{AB}}=\{\mathrm{Y}\}$
Prove that : 1 XYEC is a cyclic quadrilateral.

$2 \mathrm{~m}(\angle \mathrm{DYB})=\mathrm{m}(\angle \mathrm{DBX})$

24 South Sinai Governorate

Answer the following questions :

1 Choose the correct answer from those given :

1 The measure of the inscribed angle drawn in a semicircle equals
(a) 90°
(b) 45°
(c) 180°
(d) 120°
(2) A rhombus whose two diagonals lengths are $6 \mathrm{~cm} ., 8 \mathrm{~cm}$., then its area is \qquad
(a) 14
(b) 24
(c) 48
(d) 12

3 If ABCD is a cyclic quadrilateral, then $\mathrm{m}(\angle \mathrm{A})+\mathrm{m}(\angle \mathrm{C})-90^{\circ}=$
(a) 180°
(b) 100°
(c) 90°
(d) 120°

Klnoneris

4 In the triangle $A B C$, where $(A B)^{2}+(B C)^{2}<(A C)^{2}$, then $\angle B$ is
(a) right.
(b) acute.
(c) straight.
(d) obtuse.

5 The sum of measures of the interior angles of the triangle equals
(a) 180°
(b) 90°
(c) 100°
(d) 360°

6 The number of axes of symmery of the circle is
(a) zero
(b) an inifinite number
(c) 2
(d) 3

2 [a] In the opposite figure :
$\mathrm{m}(\widehat{\mathrm{AB}})=50^{\circ}$
Find: $1 \mathrm{~m}(\angle \mathrm{D})$
(2) $\mathrm{m}(\angle \mathrm{AMB})$
[b] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ are two chords in the circle M
,$m(\overparen{A D})=m(\overparen{B C})$
Prove that : $\mathrm{AB}=\mathrm{CD}$

Prove that : $\mathrm{AB}=\mathrm{CD}$

3 [a] If the radius length of the circle M is 5 cm . and the radius length of the circle N is 3 cm ., $\mathrm{MN}=8 \mathrm{~cm}$., show the position of the two circles.
[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a tangent-segment to the circle M
, $\overline{\mathrm{AC}}$ is a diameter of it and $\mathrm{m}(\angle \mathrm{AMD})=60^{\circ}$
1 Find:m $(\angle \mathrm{ABC})$
(2) Prove that: $\mathrm{AB}=\frac{1}{2} \mathrm{BC}$

4 [a] In the opposite figure :
$m(\angle B)=m(\angle C)$
, D is the midpoint of $\overline{\mathrm{AB}}$
, E is the midpoint of $\overline{\mathrm{AC}}$
Prove that : $\mathrm{MD}=\mathrm{ME}$

[b] In the opposite figure :
ABCD is a parallelogram
and $E \in \overline{B C}$, such that : $A B=A E$
Prove that : The figure AECD is a cyclic quadrilateral.

Klland

5 [a] In the opposite figure :

$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ are two tangents to the circle at B and C $, \mathrm{m}(\angle \mathrm{A})=50^{\circ}, \mathrm{m}(\angle \mathrm{EDC})=115^{\circ}$
Prove that : $1 \overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABE}$

$$
\text { (2) } \mathrm{CB}=\mathrm{CE}
$$

[b] In the opposite figure :
$\overline{\mathrm{AB}} \cap \overline{\mathrm{CD}}=\{\mathrm{F}\}, \overrightarrow{\mathrm{AC}} \cap \overrightarrow{\mathrm{DB}}=\{\mathrm{E}\}$
, $\mathrm{m}(\angle \mathrm{A})=30^{\circ}$
, $m(\angle \mathrm{E})=50^{\circ}$
Find: $1 \mathrm{~m}(\widehat{\mathrm{AD}})$

$$
\text { (2) } \mathrm{m}(\angle \mathrm{AFD})
$$

25) North Sinai Governorate

Answer the following questions:

1 Choose the correct answer from those given :
1 If the surface of the circle $M \cap$ the surface of the circle $N=\{A\}$, then M, N are
(a) distant.
(b) concentric.
(c) touching externally.
(d) intersecting.
(2) In the opposite figure :
$\overline{\mathrm{AD}}$ is a median in the triangle ABC
, the area of the triangle $A B D=20 \mathrm{~cm}^{2}$.
, then the area of the triangle $\mathrm{ACD}=$

$$
\mathrm{cm}^{2}
$$

(a) 20
(b) 40
(c) 60
(d) 80
(3) In the opposite figure :

If $m(\angle \mathrm{BAD})=80^{\circ}$
, then $\mathrm{m}(\angle \mathrm{DCW})=$ \qquad .${ }^{\circ}$
(a) 30
(b) 80
(c) 60
(d) 120

(4) The area of the square whose diagonal length is 4 cm . equals \qquad
(a) 4
(b) 8
(c) 16
(d) 16π

5 In the opposite figure :
$\mathrm{m}(\angle \mathrm{AMB})=50^{\circ}$
, then $m(\widehat{\mathrm{ADB}})=$ \qquad
(a) 50
(b) 100
(c) 310
(d) 350

6 A triangle having one symmetry line and its side lengths are $8,4, x \mathrm{~cm}$. , then $x=$
(a) 2
(b) 4
(c) 8
(d) 12

2 [a] In the opposite figure :
If $A B=C D$
, $\overline{\mathrm{MW}} \perp \overline{\mathrm{AB}}$
, $\overline{\mathrm{MH}} \perp \overline{\mathrm{CD}}$
Prove that : WX $=$ HY

[b] In the opposite figure :
$\overrightarrow{\mathrm{CD}}$ is a tangent to the circle M at C
, $\overrightarrow{\mathrm{CD}} / / \overline{\mathrm{BA}}$ and $\mathrm{M} \in \overline{\mathrm{AB}}$
1 Prove that: $\mathrm{AC}=\mathrm{BC}$
(2) Find: m ($\angle B$)

3 [a] State two cases in which the figure is a cyclic quadrilateral.
[b] In the opposite figure :
$\overline{\mathrm{BC}}$ is a diameter in the circle M
, $\overrightarrow{\mathrm{AC}}$ is a tangent to the circle M at C
, D is the midpoint of $\overline{\mathrm{BW}}$
Prove that :
1 The figure ADMC is a cyclic quadrilateral.
(2) $\mathrm{m}(\angle \mathrm{CBH})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{~A})$

4] [a] In the opposite figure :
$\overline{\mathrm{BC}}$ is a diameter in the circle M
, $\overrightarrow{\mathrm{CA}} \cap \overrightarrow{\mathrm{HA}}=\{\mathrm{A}\}, \mathrm{m}(\angle \mathrm{A})=30^{\circ}$
and $m(\overparen{\mathrm{CH}})=80^{\circ}$
Find : $m(\overparen{D H})$

[b] In the opposite figure :
$\overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments to the circle at B and C and $\mathrm{m}(\angle \mathrm{BDC})=70^{\circ}$
Find : $m(\angle B A C)$

Klnondus

5 [a] In the opposite figure :

$\mathrm{AB}=\mathrm{AD}, \mathrm{m}(\angle \mathrm{ABD})=30^{\circ}$
and $m(\angle C)=60^{\circ}$
Prove that : ABCD is a cyclic quadrilateral.

[b] By using geometric instruments, draw $\triangle \mathrm{ABC}$ where
$\mathrm{AB}=3 \mathrm{~cm} ., \mathrm{BC}=4 \mathrm{~cm}$., $\mathrm{AC}=5 \mathrm{~cm}$., then draw a circle passing through the vertices of $\triangle A B C$
How many circles are there?

26

Red Sea Governorate

Answer the following questions :

1 Choose the correct answer from the given answers :
1 The angle of tangency is included between
(a) two chords.
(b) two tangents.
(c) a chord and a tangent.
(d) a chord and a diameter.
(2) The number of symmetry axes of the semicircle is \qquad
(a) zero
(b) 1
(c) 3
(d) an infinite number.

3 A circle of circumference $6 \pi \mathrm{~cm}$. and a straight line L is at 3 cm . distant from its centre , then L is
(a) a tangent.
(b) a secant.
(c) outside the circle.
(d) a diameter of the circle.

4 The inscribed angle in a semicircle is \qquad angle.
(a) an acute
(b) an obtuse
(c) a straight
(d) a right
(5) The radius length of the circle whose centre is the point of origin and passes through $(-3,4)$ equals $\cdots \cdots \ldots \ldots \ldots \ldots$ length unit.
(a) 3
(b) 4
(c) 5
(d) 7
(6) In the opposite figure :

ABC is a right-angled triangle at A
$, \overline{\mathrm{AD}} \perp \overline{\mathrm{BC}}, \mathrm{BD}=16 \mathrm{~cm}$.
, $C D=9 \mathrm{~cm}$., then $A B=$
cm .

(a) 5
(b) 7
(c) 20
(d) 25

Kllan Mus

[2] In the opposite figure :

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ are two chords equal in length in the circle M
$, \overrightarrow{\mathrm{MX}} \perp \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{MY}} \perp \overrightarrow{\mathrm{CD}}$
Prove that : HX = FY
[b] In the opposite figure :
$\mathrm{H} \in \overrightarrow{\mathrm{AB}}, \mathrm{m}(\widehat{\mathrm{AB}})=110^{\circ}$
, $m(\angle \mathrm{CDB})=30^{\circ}$
Find: $m(\angle \mathrm{HBC})$

3 [a] In the opposite figure :
ABC is a triangle drawn in the circle M
, $\mathrm{m}(\angle \mathrm{MBC})=25^{\circ}$
Find : $m(\angle B A C)$
[b] In the opposite figure :
$\mathrm{AB}=\mathrm{AC}, \mathrm{m}(\angle \mathrm{D})=100^{\circ}$
, $\mathrm{m}(\angle \mathrm{ABC})=50^{\circ}$
Prove that : ABDC is a cyclic quadrilateral.

4 [a] In the opposite figure :
M and N are two intersecting circles at A and B
, $\mathrm{C} \in \overrightarrow{\mathrm{BA}}, \mathrm{D} \in$ the circle $\mathrm{N}, \mathrm{m}(\angle \mathrm{MND})=125^{\circ}$
, $\mathrm{m}(\angle \mathrm{C})=55^{\circ}$
Prove that : $\overleftrightarrow{\mathrm{CD}}$ is a tangent to the circle N at D

[b] In the opposite figure :
$\overleftrightarrow{\mathrm{AX}}$ is a common tangent for the two circles touching internally at A
Prove that : $\overline{\mathrm{BD}} / / \overline{\mathrm{CH}}$

にlaw

[a] In the opposite figure :

$\overrightarrow{\mathrm{CB}} \cap \overrightarrow{\mathrm{HD}}=\{\mathrm{A}\}, \mathrm{m}(\angle \mathrm{A})=40^{\circ}$
, $\overline{\mathrm{CD}} \cap \overline{\mathrm{BH}}=\{\mathrm{X}\}$
, $m(\angle \mathrm{DCB})=26^{\circ}$

Find : $m(\overparen{\mathrm{CH}}), m(\angle \mathrm{HXC})$

[b] In the opposite figure :

$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ are two tangents to the circle at B and C , $\mathrm{m}(\angle \mathrm{A})=70^{\circ}$
, $\mathrm{m}(\angle \mathrm{CDH})=125^{\circ}$
Prove that : $\mathrm{CB}=\mathrm{CH}$

27

Matrouh Governorate

Answer the following questions :

1 Choose the correct answer from those given :
1 In the cyclic quadrilateral, each two opposite angles are
(a) equal in measure.
(b) complementary.
(c) supplementary.
(d) alternate.
(2) A square is of perimeter 20 cm ., then its area equals
(a) $50 \mathrm{~cm}^{2}$.
(b) 50 cm .
(c) $25 \mathrm{~cm}^{2}$
(d) 25 cm .
(3) $\triangle \mathrm{ABC}$ is right-angled at B , if $\mathrm{BC}=8 \mathrm{~cm}$. $\mathrm{AB}=6 \mathrm{~cm}$., then $\sin \mathrm{C}=$
(a) $\frac{3}{4}$
(b) $\frac{4}{3}$
(c) $\frac{5}{3}$
(d) 0.6

4 The ratio between the measure of the central angle and the measure of the inscribed angle subtended by the same arc equals \qquad
(a) $1: 2$
(b) $2: 1$
(c) $1: 3$
(d) $1: 4$
(5) The measure of the angle of the regular pentagon is equal to \qquad
(a) 72°
(b) 180°
(c) 108°
(d) 120°
(6) A chord with length 8 cm . in a circle with circumference $10 \pi \mathrm{~cm}$., then it is distant from its center by
(a) 2 cm .
(b) 3 cm .
(c) 4 cm .
(d) 5 cm .

2 [a] $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords equal in length in a circle M, X and Y are the midpoints of $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ respectively, $\mathrm{m}(\angle \mathrm{MXY})=30^{\circ}$
Prove that : $\triangle \mathrm{MXY}$ is an isosceles triangle.

[b] In the opposite figure :

$\overrightarrow{\mathrm{AF}}$ is a tangent to the circle at A
, $\overrightarrow{\mathrm{AF}} / / \overrightarrow{\mathrm{DE}}$
Prove that : DEBC is a cyclic quadrilateral.

3] [a] In the opposite figure :
A circle of center M
, $\mathrm{m}(\angle \mathrm{BMC})=100^{\circ}$
, $\mathrm{m}(\angle \mathrm{ABD})=120^{\circ}$
Find: $m(\angle D C B)$

[b] In the opposite figure :
$\overline{\mathrm{AD}}$ is a diameter in the circle M
, $\overrightarrow{\mathrm{CA}}$ and $\overrightarrow{\mathrm{CB}}$ are two tangents to the circle M
, touching it at A and B respectively.
Prove that : $\mathrm{m}(\angle \mathrm{DMB})=\mathrm{m}(\angle \mathrm{ACB})$

4 [a] In the opposite figure :
ABC is a triangle inscribed in a circle
, $\overleftrightarrow{A D}$ is a tangent to the circle at A
, $\mathrm{X} \in \overline{\mathrm{AB}}, \mathrm{Y} \in \overline{\mathrm{AC}}$ where $\overline{\mathrm{XY}} / / \overline{\mathrm{BC}}$
Prove that : $\overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle
 passing through the points A, X and Y
[b] In the opposite figure :
$A B C$ is an inscribed triangle inside a circle , $\overline{\mathrm{DE}} / / \overline{\mathrm{BC}}$
Prove that : $\mathrm{m}(\angle \mathrm{DAC})=\mathrm{m}(\angle \mathrm{BAE})$

5 [a] Prove that : In the same circle, the measures of all inscribed angles subtended by the same arc are equal.
[b] In the opposite figure :
$\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to the circle at B, C
, $\mathrm{m}(\angle \mathrm{A})=70^{\circ}, \mathrm{m}(\angle \mathrm{CDE})=125^{\circ}$
Prove that : $1 \mathrm{CB}=\mathrm{CE}$
(2) $\overrightarrow{\mathrm{AC}} / / \overrightarrow{\mathrm{BE}}$

Klnondus

Geometry

Answers of school book examinations in geometry

Model 1

$1 \mathrm{~d} \quad 2 \mathrm{a} \quad 3 \mathrm{~d} \quad 4 \mathrm{a} \quad 5 \mathrm{~b} \quad 6 \mathrm{a}$

2

[a] supplementary, theoratical.
[b] $\because \overline{\mathrm{XY}} / / \overrightarrow{\mathrm{BD}}, \overrightarrow{\mathrm{AB}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{DBX})=\mathrm{m}(\angle \mathrm{BXY})$ (altemate angles) (1) ,$\because \mathrm{m}(\angle \mathrm{C})$ (inscribed) $=\mathrm{m}(\angle \mathrm{ABD})$ (tangency) (2) From (1) and (2): $\therefore \mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle B X Y)$ \therefore AXYC is a cyclic quadrilateral.
(Q.E.D.)

3

[a] $\because \overrightarrow{A B}, \overrightarrow{A C}$ are two tangents to the smaller circle
$\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore 2 x-3=15$
$\therefore 2 x=18$
$\therefore x=9$
$, \because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AD}}$ are two tangents to the greater circle

$$
\therefore \mathrm{AB}=\mathrm{AD}
$$

$\therefore y-2=15$
$\therefore y=17$
[b] $\because m(\angle B D C)=m(\angle B A C)$
(two inscribed angles subtended by $\widehat{B C}$)
$\therefore \mathrm{m}(\angle \mathrm{BDC})=30^{\circ}$
$\because m(\overparen{B C})=2 \mathrm{~m}(\angle B A C)=60^{\circ}$
,$\because \overline{\mathrm{AB}}$ is a diameter in the circle M
$\therefore \mathrm{m}(\widehat{\mathrm{AB}})=180^{\circ}$
$\therefore \mathrm{m}(\widehat{\mathrm{AC}})=180^{\circ}-60^{\circ}=120^{\circ}$
,$\because \mathrm{D}$ is the midpoint of $\widehat{\mathrm{AC}}$
$\therefore \mathrm{m}(\widehat{\mathrm{AD}})=\frac{120^{\circ}}{2}=60^{\circ}$
(First req.)
$\therefore \mathrm{m}(\angle \mathrm{ACD})=\frac{1}{2} \mathrm{~m}(\widehat{\mathrm{AD}})=\frac{1}{2} \times 60^{\circ}=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CAB})=\mathrm{m}(\angle \mathrm{ACD})$ but they are alterante
$\therefore \overline{\mathrm{AB}} / / \overline{\mathrm{DC}}$
(Second req.)
4
[a] $\because \mathrm{x}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{MXA})=90^{\circ}$
,$\because \mathrm{Y}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$

$$
\therefore(\angle M Y A)=90^{\circ}
$$

From the quadrilateral $A X M Y$:

$$
\therefore \mathrm{m}(\angle \mathrm{DMH})=360^{\circ}-\left(90^{\circ}+90^{\circ}+70^{\circ}\right)=110^{\circ}
$$

(First req.)
$\because \mathrm{AB}=\mathrm{AC}, \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{MX}=\mathrm{MY} \quad, \because \mathrm{MD}=\mathrm{MH}=\mathrm{r}$
By subtracting: $\therefore \mathrm{XD}=\mathrm{YH} \quad$ (Second req.)
[b] $\because \mathrm{m}(\angle \mathrm{A})=\frac{1}{2}[\mathrm{~m}(\overparen{\mathrm{HC}})-\mathrm{m}(\widehat{\mathrm{BD}})]$
$\therefore 30^{\circ}=\frac{1}{2}\left[120^{\circ}-\mathrm{m}(\widehat{\mathrm{BD}})\right]$
$\therefore 60^{\circ}=120^{\circ}-\mathrm{m}(\overparen{\mathrm{BD}}) \quad \therefore \mathrm{m}(\widehat{\mathrm{BD}})=120^{\circ}-60^{\circ}$
$\therefore \mathrm{m}(\widehat{\mathrm{BD}})=60^{\circ}$
(First req.)
,$\because \mathrm{m}(\widehat{\mathrm{BC}})=\mathrm{m}(\overparen{\mathrm{DH}}) \quad \therefore \mathrm{BC}=\mathrm{DH}$
by adding m ($\widehat{\mathrm{BD}}$) to both sides
$\therefore \mathrm{m}(\widehat{\mathrm{CD}})=\mathrm{m}(\widehat{\mathrm{HB}}) \quad \therefore \mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{H})$
$\ln \triangle \mathrm{ACH}: \therefore \mathrm{AC}=\mathrm{AH}, \because \mathrm{BC}=\mathrm{DH}$
By sbutracting: $\therefore \mathrm{AB}=\mathrm{AD} \quad$ (Second req.)

5

[a] $\because \overline{\mathrm{DA}}$ and $\overline{\mathrm{DB}}$ are two tangent-segments to the circle M at A and B
$\therefore \mathrm{DA}=\mathrm{DB}$
$\therefore \mathrm{m}(\angle 1)=\mathrm{m}(\angle 2)$
$\therefore \mathrm{m}(\angle \mathrm{D})$

$$
=180^{\circ}-2 \mathrm{~m}(\angle 1)
$$

In $\triangle \mathrm{ABC}: \because \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{m}(\angle 3)=\mathrm{m}(\angle 4)$
$\therefore \mathrm{m}(\angle \mathrm{BAC})=180^{\circ}-2 \mathrm{~m}(\angle 4)$
,$\because \overline{\mathrm{AD}}$ is a tangent-segment to the circle
$\therefore \mathrm{m}(\angle 4)$ (inscribed) $=\mathrm{m}(\angle 1)$ (tangency)
From (1), (2) and (3): $\therefore \mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle \mathrm{D})$
$\therefore \overline{\mathrm{AC}}$ is a tangent to the circle passing through the vertices of the $\triangle \mathrm{ABD}$
(Q.E.D.)
[b] $\ln \triangle \mathrm{AMB}: \because \mathrm{AM}=\mathrm{BM}=\mathrm{r}$
$\therefore \mathrm{m}(\angle \mathrm{MBA})=\mathrm{m}(\angle \mathrm{MAB})=20^{\circ}$
$\because \mathrm{C}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MC}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{MCB})=90^{\circ}$
$\ln \triangle \mathrm{BCM}: \therefore \mathrm{m}(\angle \mathrm{BMC})=180^{\circ}-\left(90^{\circ}+20^{\circ}\right)=70^{\circ}$,$\because m(\angle \mathrm{BHD})=\frac{1}{2} m(\angle \mathrm{BMD})$
(inscribed and central angles subtended by $\widehat{B D}$)
$\therefore \mathrm{m}(\angle \mathrm{BHD})=\frac{1}{2} \times 70^{\circ}=35^{\circ} \quad$ (First req.)
In \triangle AMB: $\because A M=B M=r$
, $\mathrm{m}(\angle \mathrm{MAB})=\mathrm{m}(\angle \mathrm{MBA})=20^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{AMB})=180^{\circ}-\left(20^{\circ}+20^{\circ}\right)=140^{\circ}$
$\therefore \mathrm{m}(\widehat{\mathrm{ADB}})=\mathrm{m}(\angle \mathrm{AMB})=140^{\circ}$ (Second req.)

Model 2

1

1) b
(2) d
(4) c
(5)d
3b
5 b

2
[a] $\because A B=A C$
$, \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}$
$\therefore M D=M E \quad, \because M X=M Y=r$
$\therefore \mathrm{DX}=\mathrm{EY}$
(Q.E.D.)
[b] $\ln \triangle A B D: \because A B=A D$
$\therefore \mathrm{m}(\angle \mathrm{ABD})=\mathrm{m}(\angle \mathrm{ADB})=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-2 \times 30^{\circ}=120^{\circ}$
,$\because \mathrm{m}(\angle \mathrm{A})+\mathrm{m}(\angle \mathrm{C})=120^{\circ}+60^{\circ}=180^{\circ}$
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral.
(Q.E.D.)

3
[a] State by yourself.
[b] $\because \mathrm{E}$ is the midpoint of $\widehat{\mathrm{BF}}$
$\therefore \mathrm{m}(\widehat{\mathrm{FE}})=\mathrm{m}(\widehat{\mathrm{BE}})$
$\therefore \mathrm{m}(\angle \mathrm{FAE})=\mathrm{m}(\angle \mathrm{BAE})$
,$\because \mathrm{m}(\angle \mathrm{CBE})$ (tangency) $=\mathrm{m}(\angle \mathrm{BAE})$
(inscribed)
$\therefore \mathrm{m}(\angle \mathrm{DAC})=\mathrm{m}(\angle \mathrm{DBC})$
and they are drawn on $\overline{\mathrm{DC}}$ and on one side of it
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral.
[a] $\because \overline{\mathrm{AD}}, \overline{\mathrm{AF}}$ are two tangent-segments to the circle
$\therefore \mathrm{AD}=\mathrm{AF}=5 \mathrm{~cm}$.
$, \because \overline{\mathrm{BD}}, \overline{\mathrm{BE}}$ are two tangent-segments to the circle
$\therefore B D=B E=4 \mathrm{~cm}$.
$, \because \overline{\mathrm{CE}}, \overline{\mathrm{CF}}$ are two tangent-segments to the circle
$\therefore \mathrm{CE}=\mathrm{CF}=3 \mathrm{~cm}$.
\therefore The perimeter of $\triangle \mathrm{ABC}=5+5+4+4+3+3$ $=24 \mathrm{~cm}$. (The req.)
[b] $\because \overrightarrow{\mathrm{AF}} / / \overline{\mathrm{DE}}, \overrightarrow{\mathrm{AB}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{AED})=\mathrm{m}(\angle \mathrm{EAF}) \quad$ (alternate angles)
, $\because \mathrm{m}(\angle \mathrm{C})$ (inscribed) $=\mathrm{m}(\angle \mathrm{BAF})$ (tangency)
$\therefore \mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{AED})$
\therefore DEBC is a cyclic quadrilateral. (Q.E.D.)

5

$\because B C D E$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{CBE})+\mathrm{m}(\angle \mathrm{D})=180^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CBE})=180^{\circ}-125^{\circ}=55^{\circ}$
$, \because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to the circle
$\therefore \mathrm{AB}=\mathrm{AC}$
\therefore In $\triangle \mathrm{ABC}: \mathrm{m}(\angle \mathrm{ACB})=\mathrm{m}(\angle \mathrm{ABC})$

$$
=\frac{180^{\circ}-70^{\circ}}{2}=55^{\circ}
$$

$\therefore \mathrm{m}(\angle \mathrm{CBE})=\mathrm{m}(\angle \mathrm{ACB})=55^{\circ}$
and they are alternate angles
$\therefore \overrightarrow{\mathrm{AC}} / / \overline{\mathrm{BE}}$
, $\because \mathrm{m}(\angle B E C)$ (inscribed)
$=\mathrm{m}(\angle \mathrm{ACB})$ (tangency) $=55^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CBE})=\mathrm{m}(\angle \mathrm{BEC})=55^{\circ}$
$\therefore \ln \triangle \mathrm{CBE}: \mathrm{CB}=\mathrm{CE}$

Model examination for the merge students

1 diameter
(2) perpendicular to this chord
(3) equal
(4) 3
5 infinite
[6] 180°

2		
1 a	2 a	3 d
4 c	5 c	6 c

$1 x$
$4 \sqrt{ } 1$
[2]
(5) x
(3) x
(6) x
190°
(2) 130°
(3) 40°
(4) 5
(5) 30°
(6) $2: 1$

Klnondus

2

Answers of governorates' examinations of geometry

1 Cairo

1 c
(2) b
(3) a
4 a
$5 \mathrm{c} . \mathrm{d}$
[a] Mention by yourself.
[b] $\because \overline{\mathrm{AB}}$ is a diameter in the circle M
$\therefore \mathrm{m}(\angle \mathrm{ACB})=90^{\circ}$
,$\because \overline{\mathrm{DE}} \perp \overline{\mathrm{AD}}$
$\therefore \mathrm{m}(\angle \mathrm{ADE})=90^{\circ}$
(1) (First req.)

From (1) and (2) :
$\therefore m(\angle \mathrm{ADE})=\mathrm{m}(\angle \mathrm{ACE})$
but they are drawn on $\overline{\mathrm{AE}}$ and on one side of it
\therefore The figure ACDE is a cyclic quadrilateral.
(Second req.)

3

[a] The measure of the arc $=\frac{1}{3} \times 360^{\circ}=120^{\circ}$
(The req.)
[b] $\because m(\angle B A C)=\frac{1}{2} m(\angle B M C)$
(inscribed and central angles subtended the same arc $\overparen{B C}$)
$\therefore \mathrm{m}(\angle \mathrm{BAC})=\frac{1}{2} \times 80^{\circ}=40^{\circ}$
, $\because A B=A C$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=\frac{180^{\circ}-40^{\circ}}{2}=70^{\circ}$
(First req.)
$\because m(\widehat{B C})=m(\angle M)=80^{\circ}$
$\therefore \mathrm{m}\left(\widehat{\mathrm{BC}}\right.$ the major) $=360^{\circ}-80^{\circ}=280^{\circ}$
(Second req.)
[a] $\because \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{ME}} \perp \overline{\mathrm{CB}}$
, \because The sum of measures of the interior angles of the quadrilateral $\mathrm{BDME}=360^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{DME})=360^{\circ}-\left(70^{\circ}+90^{\circ}+90^{\circ}\right)=110^{\circ}$ (First req.)
$\because M D=M E, \overline{M D} \perp \overline{\mathrm{AB}}, \overline{\mathrm{ME}} \perp \overline{\mathrm{CB}}$
$\therefore \mathrm{AB}=\mathrm{CB}$
(Second req.)
[b] $\because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents.
$\therefore A B=A C$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})$
$, \because \overrightarrow{\mathrm{BD}} / / \overrightarrow{\mathrm{AC}}, \overrightarrow{\mathrm{BC}}$ is a transversal.
$\therefore \mathrm{m}(\angle \mathrm{DBC})=\mathrm{m}(\angle \mathrm{ACB})$ (alternate angles) (2)
From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{DBC})$
$\therefore \overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABD}$
(Q.E.D.)

5

[a]

\because The radius length of the smallest circle $=3 \mathrm{~cm}$.
[b] $\because \overrightarrow{\mathrm{AD}}$ is a tangent to the circle at A
$\therefore \mathrm{m}(\angle \mathrm{ABC})$ (inscribed) $=\mathrm{m}(\angle \mathrm{CAD})$
$($ tangency $)=50^{\circ}$
, $\because A C=B C$
$\therefore \mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle \mathrm{ABC})=50^{\circ}$
, $m(\angle B E C)=m(\angle B A C)=50^{\circ}$
(two inscribed angles subtended by $\widehat{B C}$)
(First req.)
, $\because m(\angle B E C)=m(\angle A B C)=50^{\circ}$
$\therefore \overrightarrow{\mathrm{BC}}$ is a tangent to the circle passing through the vertices of $\triangle \mathrm{BEO}$
(Second req.)

2) Giza

$1 \mathrm{~d} \quad 2 \mathrm{c}$ (3) 4 b (5) 5 d

2
[a] $\because \mathrm{m}(\angle \mathrm{A})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{BMD})=\frac{1}{2} \times 150^{\circ}=75^{\circ}$ (inscribed and central angles subtened by $\widehat{\mathrm{BD}}$) , $\because \mathrm{ABCD}$ is a cyclic quadrilateral.
$\therefore \mathrm{m}(\angle \mathrm{C})=180^{\circ}-75^{\circ}=105^{\circ}$
(The req.)
[b] $\ln \triangle \mathrm{ABC}: \because \mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{C})$
$\therefore \mathrm{AB}=\mathrm{AC}$
, $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}} \quad, \because \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
$\therefore M X=M Y$
(Q.E.D.)

L

[a] Construction :
Draw $\overline{\mathrm{MX}} \perp \overline{\mathrm{BD}}$
,$\overline{N Y} \perp \overline{\mathrm{BE}}$
Proof : $\because \overrightarrow{\mathrm{BD}} / / \overrightarrow{\mathrm{MN}}$

, $\overline{\mathrm{MX}} \perp \overline{\mathrm{BD}}, \overline{\mathrm{NY}} \perp \overline{\mathrm{BE}}$
$\therefore \overline{\mathrm{MX}} / / \overline{\mathrm{NY}}$
\therefore The figure MXYN is a rectangle
$\therefore \mathrm{X}$ is midpoint of $\overline{\mathrm{BD}}$
, Y is midpoint of $\overline{\mathrm{BE}}$
$\therefore \mathrm{DE}=2 \mathrm{XY}$
, $\because X Y=M N$
$\therefore \mathrm{DE}=2 \mathrm{MN}$
(Q.E.D.)
[b] $\because \widehat{\mathrm{AB}}$ is a tangent to the circle M
$\therefore \overline{\mathrm{MA}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{MAB})=90^{\circ}$
In $\triangle M A B: \because m(\angle A B M)=30^{\circ}, m(\angle M A B)=90^{\circ}$
$\therefore \mathrm{BM}=2 \mathrm{AM}=2 \times 8=16 \mathrm{~cm}$.
$\therefore(A B)^{2}=(B M)^{2}-(M A)^{2}=(16)^{2}-(8)^{2}=192$
$\therefore A B=8 \sqrt{3} \mathrm{~cm}$.
(First req.)
,$\because A C=\frac{A M \times A B}{B M}$
$\therefore A C=\frac{8 \times 8 \sqrt{3}}{16}=4 \sqrt{3} \mathrm{~cm}$.
(Second req.)
4
[a] $\because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments to the circle
$\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore \ln \triangle \mathrm{ABC}: \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})$

$$
=\frac{180^{\circ}-50^{\circ}}{2}=65^{\circ}
$$

, $\because \mathrm{BCDE}$ is a cyclic quadrilateral.
$\therefore \mathrm{m}(\angle \mathrm{EBC})+\mathrm{m}(\angle \mathrm{D})=180^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{EBC})=180^{\circ}-115^{\circ}=65^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{EBC})$
$\therefore \overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABE}$
(Q.E.D.I)
, $\because \mathrm{m}(\angle \mathrm{BEC})$ (inscribed)

$$
=\mathrm{m}(\angle \mathrm{ABC})(\text { tangency })=65^{\circ}
$$

$\therefore \mathrm{m}(\angle \mathrm{EBC})=\mathrm{m}(\angle \mathrm{BEC})$
$\therefore \ln \triangle \mathrm{BCE}: C B=C E$
(Q.E.D.2)
[b] $\because \angle \mathrm{ABE}$ is an exterior angle of the cyclic quadrilateral $A B C D$
$\therefore \mathrm{m}(\angle \mathrm{D})=\mathrm{m}(\angle \mathrm{ABE})=100^{\circ}$
In $\triangle \mathrm{ACD}$:
$\because \mathrm{m}(\angle \mathrm{ACD})=180^{\circ}-\left(100^{\circ}+40^{\circ}\right)=40^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ACD})=\mathrm{m}(\angle \mathrm{CAD})$
$\therefore C D=A D$
$\therefore \mathrm{m}(\widehat{\mathrm{CD}})=\mathrm{m}(\widehat{\mathrm{AD}})$
(Q.E.D.)

5

[a] $\because m(\angle A C B)=\frac{1}{2} m(\angle A M B)=60^{\circ}$
(inscribed and central angles subtended the same arc $\widehat{A B}$)
$\overrightarrow{\mathrm{CD}} / / \overrightarrow{\mathrm{AB}}$
$\therefore m(\widehat{A C})=m(\widehat{B C})$
$\therefore \mathrm{AC}=\mathrm{BC}$
From (1) and (2):
$\therefore \triangle \mathrm{CAB}$ is an equilateral triangle.
(Q.E.D.)
[b] $\ln \triangle \triangle A D E, A C E$
$\left\{\begin{array}{l}\mathrm{m}(\angle \mathrm{DAE})=\mathrm{m}(\angle \mathrm{CAE}) \\ \mathrm{AD}=\mathrm{AC} \\ \overline{\mathrm{AE}} \text { is a common side }\end{array}\right.$
$\therefore \triangle \mathrm{ADE} \equiv \triangle \mathrm{ACE}$
$\therefore m(\angle A D E)=m(\angle A C E)$
, $\because \mathrm{m}(\angle \mathrm{AFB})=\mathrm{m}(\angle \mathrm{ACB})$
(two inscribed angles subtended by $\widehat{A B}$)
$\therefore \mathrm{m}(\angle \mathrm{ADE})=\mathrm{m}(\angle \mathrm{EFB})$
\therefore DBFE is a cyclic quadrilateral.
(Q.E.D.)

3) Alexandria

	1 b	$2 \mathrm{~d} \quad 4 \mathrm{a}$	4 b	5 d

2
[a] $\because \overline{\mathrm{CD}}$ is a diameter in a circle M
$, \mathrm{AB}=10 \mathrm{~cm}, \overline{\mathrm{MH}} \perp \overline{\mathrm{AB}}$
$\therefore \mathrm{AH}=\mathrm{BH}=5 \mathrm{~cm}$.
$\ln \triangle \mathrm{AHM}: \because \mathrm{m}(\angle \mathrm{AMH})=30^{\circ}$
, $m(\angle A H M)=90^{\circ}$
$\therefore \mathrm{AM}=2 \mathrm{AH}=10 \mathrm{~cm}$.
$\therefore C D=2 \times 10=20 \mathrm{~cm}$. (The req.)

Klnonnuls
[b] \because The figure
$A B C D$ is a cyclic quadrilateral.
$\therefore \mathrm{m}(\angle \mathrm{ABC})=180^{\circ}-125^{\circ}$ $=55^{\circ}$

$\because \overrightarrow{\mathrm{EA}}, \overrightarrow{\mathrm{EB}}$ are two tangents to the circle at A and B
$\therefore \mathrm{EA}=\mathrm{EB}$
$\therefore \mathrm{m}(\angle \mathrm{EAB})=\frac{180^{\circ}-70^{\circ}}{2}=55^{\circ}$
$\because \overrightarrow{\mathrm{EA}}$ is a tangent to the circle at A
$\therefore \mathrm{m}$ ($\angle \mathrm{EAB}$) (tangency)

$$
\begin{equation*}
=\mathrm{m}(\angle \mathrm{ACB}) \text { (inscribed })=55^{\circ} \tag{2}
\end{equation*}
$$

From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{ACB})=\mathrm{m}(\angle \mathrm{ABC})=55^{\circ}$
$\therefore \mathrm{AB}=\mathrm{AC}$
(Q.E.D.)

3

[a] $\because m(\angle A)=\frac{1}{2}[m(\overparen{H C})-m(\overparen{B D})]$
$\therefore 30^{\circ}=\frac{1}{2}\left[120^{\circ}-\mathrm{m}(\widehat{\mathrm{BD}})\right]$
$\therefore 60^{\circ}=120^{\circ}-\mathrm{m}(\widehat{\mathrm{BD}})$
$\therefore \mathrm{m}(\widehat{\mathrm{BD}})=120^{\circ}-60^{\circ}=60^{\circ}$
(First req.)
,$\because \mathrm{m}(\overparen{\mathrm{BC}})=\mathrm{m}(\overparen{\mathrm{DH}})$
$\therefore \mathrm{BC}=\mathrm{DH}$
By adding $m(\widehat{B D})$ to both sides.
$\therefore \mathrm{m}(\widehat{\mathrm{CD}})=\mathrm{m}(\widehat{\mathrm{HB}}) \quad \therefore \mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{H})$
$\ln \triangle \mathrm{ACH}: \because \mathrm{AC}=\mathrm{AH}$
, $\because B C=D H$
By subtracting : $A B=A D$
(Second req.)
[b] $\ln \triangle \mathrm{ABD}$:
$\because A B=A D$
$\therefore \mathrm{m}(\angle \mathrm{ABD})=\mathrm{m}(\angle \mathrm{ADB})=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-2 \times 30^{\circ}=120^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})+\mathrm{m}(\angle \mathrm{C})=120^{\circ}+60^{\circ}=180^{\circ}$
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral. (Q.E.D.)

4
[a] $\because m(\angle A C B)=\frac{1}{2} m(\angle A M B)=60^{\circ}$
(inscribed and central angles subtended the same $\operatorname{arc} \widehat{\mathrm{AB}}$)
$\because \stackrel{\rightharpoonup}{\mathrm{CD}} / / \overrightarrow{\mathrm{AB}}$
$\therefore \mathrm{m}(\widehat{\mathrm{AC}})=\mathrm{m}(\widehat{\mathrm{BC}})$
$\therefore \mathrm{AC}=\mathrm{BC}$
From (1) and (2) :
$\therefore \triangle \mathrm{CAB}$ is equilateral.
(Q.E.D.)

[b] Construction :

Draw $\overline{\mathrm{AB}}$
Proof:
\because The figure $A B C D$ is
 a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{BAD})=180^{\circ}-70^{\circ}=110^{\circ}$
, \because The figure $A B F E$ is a cyclic quadrilateral and $\angle B A D$ is an exteroir angle of it
$\therefore \mathrm{m}(\angle \mathrm{F})=\mathrm{m}(\angle \mathrm{BAD})=110^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{F})+\mathrm{m}(\angle \mathrm{C})=110^{\circ}+70^{\circ}=180^{\circ}$
but they are two interior angles on the same side of the transversal $\overrightarrow{\mathrm{FC}}$
$\therefore \overline{\mathrm{CD}} / / \overline{\mathrm{EF}}$
(Q.E.D.)

5

[a] $\ln \triangle \mathrm{ABC}$:
$\because A C=B C$
$\therefore \mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle \mathrm{ABC})=65^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CAD})=130^{\circ}-65^{\circ}=65^{\circ}$
, $\because m(\angle B)=m(\angle C A D)=65^{\circ}$
$\therefore \overrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the vertices of the triangle ABC (Q.E.D.)
[b] $\because \overrightarrow{\mathrm{AD}}$ is a tangent
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AD}} \quad \therefore \mathrm{m}(\angle \mathrm{MDA})=90^{\circ}$
,$\because H$ is the midpoint of $\overline{\mathrm{BC}}$
$\therefore \overline{\mathrm{MH}} \perp \overline{\mathrm{BC}} \quad \therefore \mathrm{m}(\angle \mathrm{MHA})=90^{\circ}$
From the quadrilateral ADMH :
$\therefore \mathrm{m}(\angle \mathrm{DMH})=360^{\circ}-\left(56^{\circ}+90^{\circ}+90^{\circ}\right)=124^{\circ}$
(The req.)

El-Kalyoubia

1 c (2) 3 d 4 4 b (5d

2
[a] $\because \overline{\mathrm{AB}} / / \overline{\mathrm{CD}} \quad \therefore \mathrm{m}(\widehat{\mathrm{AC}})=\mathrm{m}(\overparen{\mathrm{BD}})=50^{\circ}$
,$\because \mathrm{m}(\angle \mathrm{BED})=\frac{1}{2} \mathrm{~m}(\widehat{\mathrm{BD}})$
$\therefore(3 y-5)^{\circ}=\frac{1}{2} \times 50^{\circ}=25^{\circ}$
$\therefore 3 y=5^{\circ}+25^{\circ}=30^{\circ}$
$\therefore \mathrm{y}=10^{\circ}$
(The req.)
[b]

\therefore We can draw two circles.
3
[a] $\because \mathrm{x}$ is a midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$

$$
\therefore m(\angle M X A)=90^{\circ}(1)
$$

,$\because \mathrm{Y}$ is a midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$

$$
\therefore \mathrm{m}(\angle \mathrm{MYA})=90^{\circ}(2
$$

From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{MXA})=\mathrm{m}(\angle \mathrm{MYA})$
but they are drawn on $\overline{\mathrm{AM}}$ and on one side of it.
\therefore AXYM is a cyclic quadrilateral.
(Q.E.D.1)
$\ln \triangle M A C: \therefore M A=M C=r$
$\therefore \mathrm{m}(\angle \mathrm{MCA})=\mathrm{m}(\angle \mathrm{MAC})$
,\because AXYM is a cyclic quadrilateral.
$\therefore \mathrm{m}(\angle \mathrm{MXY})=\mathrm{m}(\angle \mathrm{MAY})$
$\therefore \mathrm{m}(\angle \mathrm{MXY})=\mathrm{m}(\angle \mathrm{MCY})$
(Q.E.D.2)
[b] \because ABCD is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{A})+\mathrm{m}(\angle \mathrm{C})=180^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{C})=180^{\circ}-120^{\circ}=60^{\circ}$
(First req.)
$\therefore \mathrm{m}(\angle \mathrm{FBC})=\mathrm{m}(\angle \mathrm{C})=60^{\circ}$ (alternate angles)
$\therefore \mathrm{m}(\angle \mathrm{EBC})=65^{\circ}+60^{\circ}=125^{\circ}$
,$\because \mathrm{ABCD}$ is a cyclic quadrilateral.
$\therefore \mathrm{m}(\angle \mathrm{D})=\mathrm{m}(\angle \mathrm{EBC})=125^{\circ} \quad$ (Second req.)
[a] \because The circle $M \cap$ The circle $N=\{A, B\}$
$\therefore \overline{\mathrm{MN}}$ is the axis of symmetry of $\overline{\mathrm{AB}}$
$\therefore \ln \triangle \mathrm{ABD}$:
$\stackrel{\rightharpoonup}{D C}$ is the axis of symmetry of $\overline{\mathrm{AB}}$
$\therefore A D=B D$
$\because \overline{\mathrm{MX}} \perp \overline{\mathrm{AD}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{BD}}$
$\therefore \mathrm{MX}=\mathrm{MY}$
(Q.E.D.)
[b]

$\because \overrightarrow{\mathrm{AD}}$ is a tangent to the circle.
$\therefore \mathrm{m}(\angle \mathrm{DAB})$ (tangency) $=\mathrm{m}(\angle \mathrm{ACB})$
(inscribed) (1)
$, \because \overline{\mathrm{XY}} \| \overline{\mathrm{BC}}, \overline{\mathrm{YC}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{AYX})=\mathrm{m}(\angle \mathrm{ACB})$
(corresponding angles) (2)
\therefore From (1) and (2) : $\therefore \mathrm{m}(\angle \mathrm{DAB})=\mathrm{m}(\angle \mathrm{AYX})$
$\therefore \overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle passing
through the points A, X and Y
(Q.E.D.)
[a] $\because \overline{\mathrm{AC}}$ and $\overline{\mathrm{AB}}$ are two tangent-segments to the circle M
$\therefore \overrightarrow{\mathrm{AE}} \perp \overrightarrow{\mathrm{BC}} \quad \therefore \mathrm{m}(\angle \mathrm{CEM})=90^{\circ}$
,$\because \overline{\mathrm{BD}}$ is a diameter in the circle M
$\therefore \mathrm{m}(\angle \mathrm{ECD})=90^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CEM})+\mathrm{m}(\angle \mathrm{ECD})=180^{\circ}$
, but they are two interior angles in the same side of the transversal $\overrightarrow{B C}$
$\therefore \overline{\mathrm{AM}} / / \overline{\mathrm{CD}}$
(Q.E.D.)

[b] $\because \overline{\mathrm{CM}} / / \overline{\mathrm{AB}}, \overrightarrow{\mathrm{MA}}$ is a transversal.
$\therefore \mathrm{m}(\angle \mathrm{MAB})=\mathrm{m}(\angle \mathrm{AMC})$ (alternate angles)
,$\because m(\angle A M C)=2 m(\angle B)$
(central and inscribed angles subtended by $\overparen{A C}$)
$\therefore m(\angle E A B)=2 m(\angle B)$
$\therefore m(\angle E A B)>m(\angle B)$
From $\triangle \mathrm{EAB}: \therefore \mathrm{BE}>\mathrm{AE}$
(Q.E.D.)

El-Sharkia

$1 \mathrm{~b} \quad 2 \mathrm{a} \quad 3 \mathrm{~d} \quad 4 \mathrm{~b} \quad 5 \mathrm{~d} \quad 5 \mathrm{a}$
2
[a] $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$
,$\because \mathrm{Y}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
,$\because A B=A C$ $\therefore \mathrm{MX}=\mathrm{MY}$
, $\because M D=M E=r$
$\therefore \mathrm{XD}=\mathrm{YE}$
(Q.E.D.)
[b] $\because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments to the circle.
$\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore \ln \triangle A B C$:
$\mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=\frac{180^{\circ}-70^{\circ}}{2}=55^{\circ}$
, $\because \mathrm{BCDE}$ is a cyclic quadrilateral.
$\therefore \mathrm{m}(\angle \mathrm{EBC})+\mathrm{m}(\angle \mathrm{D})=180^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{EBC})=180^{\circ}-125^{\circ}=55^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{EBC})$
$\therefore \overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABE}$
(Q.E.D.)

3
[a] $\because \mathrm{ABDC}$ is a cyclic quadrilateral.
$\therefore \mathrm{m}(\angle \mathrm{A})+\mathrm{m}(\angle \mathrm{D})=180^{\circ}$
$\therefore m(\angle A)=180^{\circ}-140^{\circ}=40^{\circ}$
,$\because \overline{\mathrm{AB}}$ is a diameter.
$\therefore \mathrm{m}(\angle \mathrm{ACB})=90^{\circ}$
$\ln \triangle \mathrm{ABC}$:
$\therefore \mathrm{m}(\angle \mathrm{ABC})=180^{\circ}-\left(90^{\circ}+40^{\circ}\right)=50^{\circ}$
(First req.)
,$\because \mathrm{m}(\widehat{\mathrm{BD}})=\mathrm{m}(\widehat{\mathrm{DC}}) \quad \therefore \mathrm{BD}=\mathrm{CD}$

In $\triangle \mathrm{BCD}$:
$\therefore \mathrm{m}(\angle \mathrm{CBD})=\mathrm{m}(\angle \mathrm{BCD})=\frac{180^{\circ}-140^{\circ}}{2}=20^{\circ}$
$\therefore \mathrm{m}(\overparen{\mathrm{BD}})=2 \mathrm{~m}(\angle \mathrm{BCD})=2 \times 20^{\circ}=40^{\circ}$
,$\because \mathrm{m}(\widehat{\mathrm{AB}})=180^{\circ}$
$\therefore \mathrm{m}(\widehat{\mathrm{ABD}})=180^{\circ}+40^{\circ}=220^{\circ} \quad$ (Second req.)
[b] $\because \overrightarrow{\mathrm{AD}}$ is a tangent to the circle
$\because \mathrm{m}(\angle \mathrm{DAB})$ (tangen y)
$=m(\angle A C B)$ (inscribed)
$, \because \overline{X Y} / / \overrightarrow{B C}, \overrightarrow{Y C}$ is a transversal.
$\therefore \mathrm{m}(\angle \mathrm{AYX})=\mathrm{m}(\angle \mathrm{ACB})$
(corresponding angles)
\therefore From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{DAB})=\mathrm{m}(\angle \mathrm{AYX})$
$\therefore \overrightarrow{\mathrm{AD}}$ is a tangent to the circle which passes through the points A, X and Y
(Q.E.D.)

4

[a] $\because \mathrm{m}(\widehat{\mathrm{BD}})=2 \mathrm{~m}(\angle \mathrm{DCB})=2 \times 25^{\circ}=50^{\circ}$
, $\because \mathrm{D}$ is midpoint of $(\widehat{\mathrm{AB}})$
$\therefore \mathrm{m}(\widehat{\mathrm{AB}})=2 \times 50^{\circ}=100^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{AMB})=\mathrm{m}(\widehat{\mathrm{AB}})=100^{\circ} \quad$ (The req.)
[b] $\because \triangle \mathrm{ABC}$ is equilateral.
$\therefore m(\angle B)=60^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{D})=\mathrm{m}(\angle \mathrm{B})=60^{\circ}$
(two inscribed angles subtended by $\widehat{A C}$)
, $\because \mathrm{AD}=\mathrm{DE}$
$\therefore \triangle \mathrm{ADE}$ is an equilateral triangle.
(Q.E.D.1)
$\because \mathrm{m}(\angle \mathrm{DAE})=\mathrm{m}(\angle \mathrm{BAC})=60^{\circ}$
Subtracting $\angle B A E$ from both sides.
$\therefore \mathrm{m}(\angle \mathrm{DAB})=\mathrm{m}(\angle \mathrm{EAC})$
(Q.E.D.2)

5

[a] $\because \overline{\mathrm{AB}}$ is a tangen-tsegment to the circle.
$\therefore \overline{\mathrm{MA}} \perp \overline{\mathrm{AB}}$
$\therefore \mathrm{m}(\angle \mathrm{A})=90^{\circ}$
$\ln \triangle M A B: \because \tan (\angle B)=\frac{A M}{A B}$
$\therefore \tan 30^{\circ}=\frac{8}{\mathrm{AB}}$
$\therefore \mathrm{AB}=\frac{8}{\tan 30^{\circ}}=8 \sqrt{3} \mathrm{~cm}$.

In \triangle MAB : $\because \mathrm{m}(\angle \mathrm{AMB})=180^{\circ}-\left(90^{\circ}+30^{\circ}\right)$

$$
=60^{\circ}
$$

,$\because m(\angle X A B)=\frac{1}{2} m(\angle \mathrm{AMB})$
(tangency and central angles)
$\therefore \mathrm{m}(\angle \mathrm{XAB})=\frac{1}{2} \times 60^{\circ}=30^{\circ}$
$\ln \triangle \mathrm{XAB}$:
$\because m(\angle X A B)=m(\angle X B A)$
$\therefore \triangle \mathrm{XAB}$ is an isosceles triangle. (Second req.)
[b] $\ln \triangle \triangle A D E, A C E:$
$\left\{\begin{array}{l}\mathrm{m}(\angle \mathrm{DAE})=\mathrm{m}(\angle \mathrm{CAE}) \\ \mathrm{AD}=\mathrm{AC} \\ \overline{\mathrm{AE}} \text { is a common side }\end{array}\right.$
$\therefore \triangle \mathrm{ADE} \equiv \triangle \mathrm{ACE}$
$\therefore \mathrm{m}(\angle \mathrm{ADE})=\mathrm{m}(\angle \mathrm{ACE})$
,$\because \mathrm{m}(\angle \mathrm{AFB})=\mathrm{m}(\angle \mathrm{ACB})$
(two inscribed angles subtended by $\overparen{A B}$)
$\therefore \mathrm{m}(\angle \mathrm{ADE})=\mathrm{m}(\angle \mathrm{EFB})$
\therefore DBFE is a cyclic quadrilateral.
(Q.E.D.)

6) El-Monofia

c (2) a (3) b b 5 c (6)
2
[a] $\because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments to the circle M
$\therefore \overline{\mathrm{AB}} \perp \overline{\mathrm{MB}}, \quad \overline{\mathrm{AC}} \perp \overline{\mathrm{MC}}$
$\therefore \mathrm{m}(\angle \mathrm{BAC})=360^{\circ}-\left(90^{\circ}+90^{\circ}+90^{\circ}\right)=90^{\circ}$
, $\mathrm{MB}=\mathrm{MC}=\mathrm{r}$
$\therefore \mathrm{ABMC}$ is a square.
(Q.E.D.)
[b] $\ln \triangle \mathrm{AMB}: \because \mathrm{AM}=\mathrm{MB}=\mathbf{r}$
$\therefore \mathrm{m}(\angle \mathrm{MAB})=\mathrm{m}(\angle \mathrm{ABM})$
$\because m(\angle C A B)=m(\angle M A B)$
$\therefore \mathrm{m}(\angle \mathrm{CAB})=\mathrm{m}(\angle \mathrm{ABM})$ and they are alternate angles.
$\therefore \overline{\mathrm{AC}} / / \overline{\mathrm{BM}}$
$\because \mathrm{D}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AC}}$
,$\because \overline{\mathrm{AC}} / / \overline{\mathrm{BM}}$
$\therefore \overline{\mathrm{DM}} \perp \overline{\mathrm{BM}}$

3
[a] $\because \overline{\mathrm{AX}}, \overline{\mathrm{AZ}}$ are two tangent-segments
$\therefore A X=A Z=6 \mathrm{~cm} . \quad \because A C=10 \mathrm{~cm}$.
$\therefore C Z=10-6=4 \mathrm{~cm}$.
$\because \overline{\mathrm{CY}}, \overline{\mathrm{CZ}}$ are two tangent-segments
$\therefore C Y=C Z=4 \mathrm{~cm}$.
$\because \overline{\mathrm{BX}}, \overline{\mathrm{BY}}$ are two tangent-segments
$\therefore B X=B Y$
\because The perimeter of $\triangle A B C=24 \mathrm{~cm}$.
$\therefore B X+B Y+6+10+4=24$
$\therefore B X+B Y=4 \quad \therefore B X=2 \mathrm{~cm}$.
$\therefore A B=6+2=8 \mathrm{~cm}$.
(First req.)
$\because(A C)^{2}=(10)^{2}=100$
,$(A B)^{2}+(B C)^{2}=(8)^{2}+(6)^{2}=100=(A C)^{2}$
$\therefore \triangle \mathrm{ABC}$ is a right-angled triangle at B
(Second req.)
[b] $\because m(\widehat{A X})=m(\widehat{A Y})$
$\therefore m(\angle A C X)=m(\angle A B Y)$ and they are drawn on
$\overline{\mathrm{DE}}$ and on one side of it

\therefore The figure $B C E D$ is a cyclic quadrilateral.
(Q.E.D.I)
$\therefore \mathrm{m}(\angle \mathrm{DEB})=\mathrm{m}(\angle \mathrm{DCB})$
(drawn on $\overline{\mathrm{DB}}$ and on one side of it) , $\because m(\angle X A B)=m(\angle X C B)$ (two inscribed angles subtended by $\overparen{X B}$) $\therefore \mathrm{m}(\angle \mathrm{DEB})=\mathrm{m}(\angle \mathrm{XAB})$
(Q.E.D.2)

4

[a] In $\triangle A B C: \because C A=C B$
$\therefore m(\angle A)=m(\angle B) \quad \therefore \sin A=\sin B$
$\therefore \frac{X M}{A M}=\frac{Y M}{B M} \quad \because A M=B M=r$
$\therefore \mathrm{XM}=\mathrm{YM}$
$, \because \overline{\mathrm{MX}} \perp \overline{\mathrm{DA}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{EB}}$
$\therefore \mathrm{DA}=\mathrm{EB}$
Subtracting (2) from (1): $\therefore \mathrm{CD}=\mathrm{CE} \quad$ (Q.E.D.)
[b] $\because \overline{\mathrm{AB}}$ is a diameter in the circle M
$\therefore \mathrm{m}(\angle \mathrm{ACB})=90^{\circ}$
,$\because \overline{\mathrm{ED}} \perp \overline{\mathrm{AB}}$
$\therefore \mathrm{m}(\angle \mathrm{FDA})=90^{\circ}$

Klnonnuls
$\therefore \mathrm{m}(\angle \mathrm{ACF})+\mathrm{m}(\angle \mathrm{FDA})=90^{\circ}+90^{\circ}=180^{\circ}$
\therefore The figure ADFC is a cyclic quadrilateral.
(Q.E.D.1)
$\because \overrightarrow{\mathrm{EC}}$ is a tangent of the circle M
$\therefore \mathrm{m}(\angle \mathrm{ECB})$ (tangency) $=\mathrm{m}(\angle \mathrm{CAB})$ (inscribed)
, $\because \angle \mathrm{CFE}$ is an exterior angle of the cyclic quadrilateral ADFC
$\therefore \mathrm{m}(\angle \mathrm{CAB})=\mathrm{m}(\angle \mathrm{CFE})$
$\therefore \mathrm{m}(\angle \mathrm{ECF})=\mathrm{m}(\angle \mathrm{CFE})$
In $\triangle \mathrm{ECF}: \therefore \triangle \mathrm{ECF}$ is an isosceles triangle.
(Q.E.D.2)

5

[a] Construction :

Draw $\overline{\mathrm{MD}}$
Proof:
$\because \overline{\mathrm{BM}}$ is a diameter in the circle N

$\therefore \mathrm{m}(\angle \mathrm{MDB})=90^{\circ}$
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{BC}}$
$\therefore \mathrm{CD}=\mathrm{DB}=4 \mathrm{~cm}$.

$$
\because M B=A M=5 \mathrm{~cm}
$$

In $\triangle \mathrm{ABC}$:
$\therefore(\mathrm{AC})^{2}=(\mathrm{AB})^{2}-(\mathrm{BC})^{2}=(10)^{2}-(8)^{2}$

$$
=100-64=36
$$

$\therefore \mathrm{AC}=6 \mathrm{~cm}$.
(The req.)
[b] $\because \overrightarrow{\mathrm{AD}}$ is a tangent to the circle
$\therefore \mathrm{m}$ ($\angle \mathrm{DAB}$) (tangency)
$=\mathrm{m}(\angle \mathrm{ACB})$ (inscribed)
$, \because \overline{\mathrm{XY}} / / \overline{\mathrm{BC}}, \overrightarrow{\mathrm{YC}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{AYX})=\mathrm{m}(\angle \mathrm{ACB})$
(corresponding angles)
From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{DAB})=\mathrm{m}(\angle \mathrm{AYX})$
$\therefore \overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the points A, X and Y
(Q.E.D.)

El-Gharbia

1
1 b (2) $\quad 3 \mathrm{~d} \quad 4 \mathrm{c}$ (5) 6 d

2

[a] $\because \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}, \overrightarrow{\mathrm{AD}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{ADC})=\mathrm{m}(\angle \mathrm{BAD})=20^{\circ}$ (alternate angles)
,$\because m(\angle \mathrm{AEC})=\mathrm{m}(\angle \mathrm{ADC})=20^{\circ}$
(two inscribed angles subtended by $\widehat{A C}$)
$\therefore 3 x-7=20 \quad \therefore 3 x=27$
$\therefore x=9$
(The req.)
[b] $\because \overline{\mathrm{BD}}$ is a tangent-segment to the circle
$\therefore \mathrm{m}(\angle \mathrm{ABD})=90^{\circ}$
, $\because \mathrm{E}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}} \quad \therefore \mathrm{m}(\angle \mathrm{MED})=90^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{MBD})+\mathrm{m}(\angle \mathrm{MED})=90^{\circ}+90^{\circ}=180^{\circ}$
\therefore The figure MEDB ia a cyclic quadrilateral.
(Q.E.D.1)
$\because \angle \mathrm{BMX}$ is an exterior angle of the cyclic quadrilateral MEDB
$\therefore \mathrm{m}(\angle \mathrm{D})=\mathrm{m}(\angle \mathrm{BMX})$
,$\because m(\angle B A X)=\frac{1}{2} m(\angle B M X)$
(inscribed and central angles subtended by $\widehat{X B}$)
$\therefore \mathrm{m}(\angle \mathrm{BAX})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{D})$
(Q.E.D.2)

3

[a] In $\triangle \mathrm{ABC}: \because \mathrm{m}(\angle \mathrm{BAC})=90^{\circ}$
$\therefore \tan B=\frac{5}{5 \sqrt{3}}=\frac{1}{\sqrt{3}}$
$\therefore \mathrm{m}(\angle \mathrm{B})=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{DAC})=30^{\circ}$
$\therefore \overrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the vertices of $\triangle A B C$
(Q.E.D.)
[b] $\because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments of the circle
$\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})$
,$\because \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}$ and $\widetilde{\mathrm{BC}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{BCD})=\mathrm{m}(\angle \mathrm{ABC})$
(alternate angles)
From (1) and (2): $\therefore \mathrm{m}(\angle \mathrm{BCD})=\mathrm{m}(\angle \mathrm{ACB})$
$\therefore \overrightarrow{\mathrm{CB}}$ bisects $\angle \mathrm{ACD}$
(Q.E.D.)

4
[a] $\because \angle A M B$ is an exterior angle of the $\triangle \mathrm{AMD}$
$\therefore \mathrm{m}(\angle \mathrm{AMB})=\mathrm{m}(\angle \mathrm{ADM})+\mathrm{m}(\angle \mathrm{DAM})$
$\therefore 80^{\circ}=30^{\circ}+\mathrm{m}(\angle \mathrm{DAM})$
$\therefore \mathrm{m}(\angle \mathrm{DAM})=80^{\circ}-30^{\circ}=50^{\circ}$
In $\triangle \mathrm{ADC}: \because \mathrm{DA}=\mathrm{DC}$
$\therefore \mathrm{m}(\angle \mathrm{DCA})=\mathrm{m}(\angle \mathrm{DAC})=50^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ABD})=\mathrm{m}(\angle \mathrm{ACD})$
and they are drawn on $\overline{\mathrm{AD}}$ and on one side of it
\therefore The figure $A B C D$ is a cyclic quadrilateral.
(Q.E.D.)
[b] $\because \mathrm{X}$ is the midpont of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$
,$\because \mathrm{Y}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
, $\because A B=A C$
$\therefore \mathrm{MX}=\mathrm{MY}$
, $\because M D=M E=r$
$\therefore \mathrm{XD}=\mathrm{YE}$
(Q.E.D)

5
[a] $\because \mathrm{m}(\widehat{\mathrm{AD}})=2 \mathrm{~m}(\angle \mathrm{ABD})=2 \times 22^{\circ}=44^{\circ}$
,$\because m(\angle C)=\frac{1}{2}[m(\overparen{B E})-m(\widehat{A D})]$
$\because 36^{\circ}=\frac{1}{2}\left[\mathrm{~m}(\overparen{\mathrm{BE}})-44^{\circ}\right]$
$\therefore 72^{\circ}=\mathrm{m}(\overparen{B E})-44^{\circ}$
$\therefore \mathrm{m}(\widehat{\mathrm{BE}})=116^{\circ}$
(The req.)
[b] $\because m(\angle B D C)=m(\angle B A C)$
(two inscribed angles subtended by $\widehat{B C}$)
$\therefore \mathrm{m}(\angle \mathrm{BDC})=30^{\circ}$
(First req.)
$\because \mathrm{m}(\overparen{B C})=2 \mathrm{~m}(\angle \mathrm{BAC})=60^{\circ}$
, $\because \overline{\mathrm{AB}}$ is diameter in the circle M
$\therefore \mathrm{m}(\widehat{\mathrm{AB}})=180^{\circ}$
$\therefore m(\widehat{A C})=180^{\circ}-60^{\circ}=120^{\circ}$
, $\because \mathrm{D}$ is the midpoint of $\overparen{\mathrm{AC}}$
$\therefore \mathrm{m}(\widehat{\mathrm{AD}})=\frac{120^{\circ}}{2}=60^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ACD})=\frac{1}{2} \mathrm{~m}(\widehat{\mathrm{AD}})=\frac{1}{2} \times 60^{\circ}=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle \mathrm{ACD})$ but they are alternate angles
$\therefore \overline{\mathrm{DC}} / / \overline{\mathrm{AB}}$
(Second req.)

8) El-Dakahlia

[a] 1 a
2) d
(3) c
[b] $\because \angle \mathrm{ABH}$ is an exterior angle of the cyclic quadrilateral $A B C D$
$\therefore \mathrm{m}(\angle \mathrm{ADC})=\mathrm{m}(\angle \mathrm{ABH})=110^{\circ}$
$\ln \triangle \mathrm{ACD}$:
$\because \mathrm{m}(\angle \mathrm{ACD})=180^{\circ}-\left(110^{\circ}+35^{\circ}\right)=35^{\circ}$
$\therefore m(\angle C A D)=m(\angle A C D)$
$\therefore C D=A D$
$\therefore \mathrm{m}(\widehat{\mathrm{CD}})=\mathrm{m}(\widehat{\mathrm{AD}})$
(Q.E.D.)

2

[a] 1 c
2a
(3) d
[b] $\because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to the circle
$\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=\frac{180^{\circ}-70^{\circ}}{2}=55^{\circ}$
(First req.)
$\because \mathrm{BCHD}$ is a cyclic quadrilateral
$\therefore m(\angle C)+m(\angle D)=180^{\circ}$
$\therefore m(\angle C)=180^{\circ}-125^{\circ}=55^{\circ}$
$\because \mathrm{m}(\angle \mathrm{BHC})$ (inscribed)
$=m(\angle A B C)($ tangency $)=55^{\circ}$
$\therefore m(\angle B C H)=m(\angle B H C)$
In $\triangle \mathrm{BCH}: \therefore \mathrm{CB}=\mathrm{BH}$
(Second req.)
3
[a] Construction :
Draw $\overline{\mathrm{MC}}$

Proof:

$\because \overline{\mathrm{CD}} / / \overline{\mathrm{AB}}, \overline{\mathrm{MY}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{MXC})+\mathrm{m}(\angle \mathrm{XMA})=180^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{MXC})=90^{\circ}$
$, \because M X=\frac{1}{2} M Y, M Y=M C$
$\therefore \mathrm{MX}=\frac{1}{2} \mathrm{MC} \quad \therefore \mathrm{m}(\angle \mathrm{MCX})=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{AMC})=\mathrm{m}(\angle \mathrm{MCX})=30^{\circ}$
(alternate angles)
$\therefore \mathrm{m}(\widehat{\mathrm{AC}})=\mathrm{m}(\angle \mathrm{AMC})=30^{\circ}$
(First req.)
,$\because(\widehat{A Y})=m(\angle A M Y)=90^{\circ}$
$\therefore \mathrm{m}(\widehat{\mathrm{CY}})=90^{\circ}-30^{\circ}=60^{\circ}$
(Second req.)

Klmonctis
[b] $\because \mathrm{AB}=\mathrm{AC}$
, $\overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MH}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{MD}=\mathrm{MH}$
,$\because M X=M Y=r$
$\therefore \mathrm{XD}=\mathrm{HY}$ (Q.E.D.)
4
[a] $\because \overrightarrow{\mathrm{AO}} / / \overline{\mathrm{DH}}, \overrightarrow{\mathrm{AH}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{HAO})=\mathrm{m}(\angle \mathrm{AHD})$ (alternate angles) (1)
, $\because \mathrm{m}(\angle \mathrm{C})$ (inscribed)
$=m(\angle B A O)$ (tangency)
From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{AHD})$
\therefore DHBC is a cyclic quadrilateral
(Q.E.D.)
[b] Construction :
Draw $\overline{\mathrm{MA}}, \overline{\mathrm{MC}}$
Proof:
$\because \overline{\mathrm{AB}}$ touches the smaller circle at C
$\therefore \overline{\mathrm{MC}} \perp \overline{\mathrm{AB}}$
,$\because \overline{\mathrm{AB}}$ is a chord of the greater circle

$$
, \overline{\mathrm{MC}} \perp \overline{\mathrm{AB}}
$$

$\therefore C$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore A C=\frac{14}{2}=7 \mathrm{~cm}$.
$\because \triangle \mathrm{AMC}$ is a right-angled at C
$\therefore(\mathrm{AC})^{2}=(\mathrm{MA})^{2}-(\mathrm{MC})^{2}$
$\therefore(7)^{2}=r_{1}-r_{2} \quad \therefore r_{1}-r_{2}=49$
\therefore The area of the part included between the two circles $=$ The area of the greater circle - The area of the smaller circle $=\pi r_{1}^{2}-\pi r_{2}^{2}=\pi\left(r_{1}^{2}-r_{2}^{2}\right)$ $=\frac{22}{7} \times 49=154 \mathrm{~cm}^{2}$.
(The req.)

5
$[\mathrm{a}] \because \mathrm{m}(\angle \mathrm{ACB})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{AMB})$
(inscribed and central angles subtended the same $\operatorname{arc} \overparen{A B}$)
$\therefore m(\angle A C B)=\frac{1}{2} \times 120^{\circ}=60^{\circ}$
$\because \overrightarrow{\mathrm{CD}} / / \overrightarrow{\mathrm{AB}} \quad \therefore \mathrm{m}(\overparen{\mathrm{AC}})=\mathrm{m}(\widetilde{\mathrm{BC}})$
$\therefore \mathrm{AC}=\mathrm{BC}$
From (1) and (2) :
$\therefore \triangle \mathrm{ABC}$ is equilateral
(Q.E.D.)
[b] Construction :
Draw $\overline{\mathrm{MB}}$

Proof:

$\ln \triangle \mathrm{MAB}$:
$\because M A=M B=r, m(\angle M A B)=60^{\circ}$
$\therefore \triangle \mathrm{AMB}$ is equilateral
$\therefore \mathrm{m}(\angle \mathrm{AMB})=60^{\circ}$
$\ln \triangle M B C: \because M B=M C=r$
$\therefore \mathrm{m}(\angle \mathrm{MBC})=\mathrm{m}(\angle \mathrm{MCB})=70^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CMB})=180^{\circ}-\left(70^{\circ}+70^{\circ}\right)=40^{\circ}$
From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{AMC})=\mathrm{m}(\angle \mathrm{AMB})+\mathrm{m}(\angle \mathrm{CMB})$

$$
=60^{\circ}+40^{\circ}=100^{\circ} \quad \text { (The req.) }
$$

9) Ismailia

1
1
1
[2] b
(3) 4 a 5 d
[6] b
2
[a] $\because m(\angle \mathrm{~A})=\frac{1}{2} m(\angle \mathrm{BMC})=x^{\circ}$
(inscribed and central angles subtended by $\overparen{B C}$)
, \because The figure ABDC is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{A})+\mathrm{m}(\angle \mathrm{BDC})=180^{\circ}$
$\therefore x+2 x=180^{\circ} \quad \therefore 3 x=180^{\circ}$
$\therefore x=60^{\circ} \quad \therefore \mathrm{m}(\angle \mathrm{A})=60^{\circ}$ (The req.)
[b] $\because m(\angle A)=m(\angle B)$
(two inscribed angles subtended by $\widehat{C D}$)
, $m(\angle C)=m(\angle D)$
(two inscribed angles subtended by $\overparen{A B}$)
$\because E A=E D$
$\therefore m(\angle A)=m(\angle D)$
$\therefore \mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{B})$
$\therefore \mathrm{EB}=\mathrm{EC}$
(Q.E.D.)

3
[a] $\ln \triangle \mathrm{ABC}$:
$\because A B=A C$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})$
,$\because \overrightarrow{\mathrm{BX}}$ bisects $(\angle \mathrm{ABC}), \overrightarrow{\mathrm{CY}}$ bisects $(\angle \mathrm{ACB})$
$\therefore \mathrm{m}(\angle \mathrm{XBY})=\mathrm{m}(\angle \mathrm{YCX})$
and they are drawn on $\overline{X Y}$ and on one side of it
$\therefore \mathrm{BCXY}$ is a cyclic quadrilateral (Q.E.D.)
nnnolm
[b] $\because m(\angle B A C)=\frac{1}{2} m(\widehat{B C})$
$\therefore \mathrm{m}(\angle \mathrm{BAC})=\frac{1}{2} \times 120^{\circ}=60^{\circ}$
In $\triangle \mathrm{ABC}: \therefore \mathrm{m}(\angle \mathrm{C})=180^{\circ}-\left(70^{\circ}+60^{\circ}\right)=50^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{DAB})=\mathrm{m}(\angle \mathrm{C})=50^{\circ}$
(inscribed and tangency angles subtended by $\widehat{A B}$)
(The req.)

4
[a] $\because \overline{\mathrm{AC}}$ is a diameter of the circle.
$\therefore \mathrm{m}(\angle \mathrm{ABC})=90^{\circ}$
, $\because \mathrm{m}(\angle \mathrm{ABD})=60^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CBD})=90^{\circ}-60^{\circ}=30^{\circ}$
(First req.)
, $\because m(\angle A D B)=m(\angle C)=50^{\circ}$
(two inscribed angles subtended by $\overparen{A B}$)
In $\triangle \mathrm{ABD}$:
$\therefore \mathrm{m}(\angle \mathrm{BAD})=180^{\circ}-\left(60^{\circ}+50^{\circ}\right)=70^{\circ}$
(Second req.)

[b] Construction :

Draw $\overline{\mathbf{M X}}, \overline{\mathrm{MY}}$
Proof:
In the smaller circle M

$\because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangents
$, \overline{\mathrm{MX}}, \overline{\mathrm{MY}}$ are two radii
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
, $\because M X=M Y=r$ (radii of the smaller circle)
$\therefore A B=A C$
(Q.E.D.)

5

[a] $\because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments to the greater circle
$\therefore 2 x-3=15$
$\therefore 2 x=18$
$\therefore x=9 \mathrm{~cm}$.
$, \because \overline{\mathrm{AC}}, \overline{\mathrm{AD}}$ are two tangent-segments to the smaller circle
$\therefore y-2=15$
$\therefore \mathrm{y}=17 \mathrm{~cm}$. (The req.)
[b] Construction :
Draw $\overline{\mathrm{AD}}, \overline{\mathrm{BD}}$
Proof :
$\because \overline{\mathrm{AB}}$ is a diameter of the circle
$\therefore \mathrm{m}(\angle \mathrm{ADB})=90^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ADB})+\mathrm{m}(\angle \mathrm{ADN})>90^{\circ}$
In $\triangle \mathrm{NDB}: \therefore \mathrm{NB}>\mathrm{ND}$
(Q.E.D.)

10) Suez

(2) b
$3 \mathrm{a} \quad 4 \mathrm{c}$
$5 \mathrm{~d} \quad 6 \mathrm{~b}$

2
[a] $\because E$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}$
$, \because \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}, \mathrm{MD}=\mathrm{ME}$
$\therefore \mathrm{AB}=\mathrm{AC}$
(Q.E.D.)
[b] $\because m(\angle A)=\frac{1}{2} m(\angle B M C)$
(inscribed and central angles subtended by $\overparen{B C}$)
$\therefore m(\angle A)=\frac{1}{2} \times 100^{\circ}=50^{\circ} \quad$ (First req.)
In $\triangle M B C: \because M B=M C=r$
$\therefore \mathrm{m}(\angle \mathrm{MBC})=\mathrm{m}(\angle \mathrm{MCB})$

$$
=\frac{1}{2}\left(180^{\circ}-100^{\circ}\right)=40^{\circ}
$$

(Second req.)

3

[a] $\because \overline{\mathrm{AB}}$ is a diameter of the circle
$\therefore \mathrm{m}(\angle \mathrm{AEB})=90^{\circ}$
(First req.)
, $\because \angle A E B$ is an exterior angle of \triangle AEC
$\therefore \mathrm{m}(\angle \mathrm{AEB})=\mathrm{m}(\angle \mathrm{CAE})+\mathrm{m}(\angle \mathrm{ACE})$
$\therefore \mathrm{m}(\angle \mathrm{CAE})=90^{\circ}-60^{\circ}=30^{\circ} \quad$ (Second req.)
[b] $\because \overrightarrow{\mathrm{AD}}$ is a tangent to the circle
$\therefore \overrightarrow{\mathrm{MD}} \perp \overrightarrow{\mathrm{AD}} \quad \therefore \mathrm{m}(\angle \mathrm{ADM})=90^{\circ}$
, $\because \mathrm{E}$ is the midpoint of $\overline{\mathrm{BC}}$
$\therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{BC}} \quad \therefore \mathrm{m}(\angle \mathrm{MEA})=90^{\circ}$
\therefore In the quadrilateral ADME :
$\therefore \mathrm{m}(\angle \mathrm{DME})=360^{\circ}-\left(90^{\circ}+90^{\circ}+70^{\circ}\right)=110^{\circ}$
(The req.)

4

[a] State by yourself.

[b] $\because A B C$ is an equilateral triangle
$\therefore \mathrm{m}(\angle \mathrm{A})=60^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{D})=\mathrm{m}(\angle \mathrm{A})$ and they are drawn on $\overline{\mathrm{BC}}$ and on one side of it
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral.
(Q.E.D.)

5
[a] $\mathrm{m}(\widehat{\mathrm{AB}})=2 \mathrm{~m}(\angle \mathrm{ADB})=60^{\circ}$
(First req.)
,$m(\angle D C B)=\frac{1}{2}[m(\widehat{A D})+m(\widehat{A B})]$ $=\frac{1}{2}\left[90^{\circ}+60^{\circ}\right]=75^{\circ}$ (Second req.)
[b] $\because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to the circle.
$\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore \ln \triangle \mathrm{ABC}$:
$\mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=\frac{1}{2}\left(180^{\circ}-40^{\circ}\right)=70^{\circ}$
(First req.)
$\because \overrightarrow{\mathrm{AB}} / / \overrightarrow{\mathrm{CD}}, \overrightarrow{\mathrm{BC}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{BCD})=\mathrm{m}(\angle \mathrm{ABC})=70^{\circ}$
(alternate angles)
, $\because \mathrm{m}(\angle \mathrm{BDC})$ (inscribed)

$$
\begin{equation*}
=\mathrm{m}(\angle \mathrm{ABC})(\text { tangency })=70^{\circ} \tag{2}
\end{equation*}
$$

From (1) and (2):
$\therefore \mathrm{m}(\angle \mathrm{BCD})=\mathrm{m}(\angle \mathrm{BDC})$
$\therefore \ln \triangle \mathrm{BCD}: \mathrm{BC}=\mathrm{BD}$
(Second req.)
11) Port Said

1
1 d (2) c (3) 4 b (5 a (6)

2
[a] $\because \mathrm{MF}=\mathrm{ME}$ (lengths of two radii)
, $\mathrm{XF}=\mathrm{YE}$
$\therefore \mathrm{MX}=\mathrm{MY}$
$\because \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{CD}}$
$\therefore A B=C D$
(Q.E.D.1)
$\because \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$
$\therefore \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore A X=\frac{1}{2} A B$
,$\because \overline{\mathrm{MY}} \perp \overline{\mathrm{CD}}$
$\therefore Y$ is the midpoinf of $\overline{C D}$
$\therefore C Y=\frac{1}{2} C D$
, $\because A B=C D$
$\therefore \mathrm{AX}=\mathrm{CY}$
$\therefore \ln \triangle \triangle \mathrm{AXF}, \mathrm{CYE}$
$\left[\begin{array}{l}\mathrm{AX}=\mathrm{CY}\end{array}\right.$
$\{X F=Y E$
$\mathrm{m}(\angle \mathrm{AXF})=\mathrm{m}(\angle \mathrm{CYE})=90^{\circ}$
$\therefore \triangle \mathrm{AXF} \equiv \triangle \mathrm{CYE}, \mathrm{AF}=\mathrm{CE}$
(Q.E.D.2)
[b] $\because m(\angle A)=\frac{1}{2}[m(\widehat{C E})-m(\widehat{B D})]$
$\therefore 30^{\circ}=\frac{1}{2}\left[120^{\circ}-\mathrm{m}(\widehat{\mathrm{BD}})\right]$
$\therefore 60^{\circ}=120^{\circ}-\mathrm{m}(\overparen{\mathrm{BD}})$
$\therefore \mathrm{m}(\widehat{\mathrm{BD}})=120^{\circ}-60^{\circ}=60^{\circ}$
(The req.)

3

[a] In $\triangle \mathrm{ABC}: \because \mathrm{m}(\angle \mathrm{BAC})=90^{\circ}, \mathrm{AC}=\frac{1}{2} \mathrm{BC}$
$\therefore \mathrm{m}(\angle \mathrm{B})=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{C})=180^{\circ}-\left(90^{\circ}+30^{\circ}\right)=60^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{DAB})=60^{\circ}$
$\therefore \overrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the vertices of $\triangle A B C$
(Q.E.D.)
[b] $\because D$ is the midpoint of $\overline{A B}$
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$
$\therefore \mathrm{m}(\angle \mathrm{ADM})=90^{\circ}$
, $\because \mathrm{E}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}$ $\therefore \mathrm{m}(\angle \mathrm{AEM})=90^{\circ}$
From the quadrilateral MDAE :
$\therefore \mathrm{m}(\angle \mathrm{DME})=360^{\circ}-\left(90^{\circ}+90^{\circ}+120^{\circ}\right)=60^{\circ}$
, $\because \mathrm{m}(\angle \mathrm{YMX})=\mathrm{m}(\angle \mathrm{DME})=60^{\circ} \quad$ (V.O.A) , $M Y=M X=r$
$\therefore \Delta \mathrm{XMY}$ is an equilateral triangle. (Q.E.D.)
4
[a] In $\triangle A M C: \because M A=M C=r$
$\therefore m(\angle \mathrm{MCA})=\mathrm{m}(\angle \mathrm{MAC})=25^{\circ}$
$\ln \triangle \mathrm{BMC}: \because \mathrm{MB}=\mathrm{MC}=\mathrm{r}$
$\therefore \mathrm{m}(\angle \mathrm{MCB})=\mathrm{m}(\angle \mathrm{MBC})=45^{\circ}$
From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{ACB})=\mathrm{m}(\angle \mathrm{MCA})+\mathrm{m}(\angle \mathrm{MCB})$
$\therefore \mathrm{m}(\angle \mathrm{ACB})=25^{\circ}+45^{\circ}=70^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{AMB})=2 \mathrm{~m}(\angle \mathrm{ACB})=2 \times 70^{\circ}=140^{\circ}$
(central and inscribed angles subtended by $\widehat{A B}$)
(The req.)

Klnonmul
[b] \because ABCE is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{XEA})=\mathrm{m}(\angle \mathrm{ABC})$
, $\because \mathrm{ABDF}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{XFA})=\mathrm{m}(\angle \mathrm{ABD})$
,$\because m(\angle A B C)+m(\angle A B D)=180^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{XEA})+\mathrm{m}(\angle \mathrm{XFA})=180^{\circ}$
$\therefore \mathrm{AFXE}$ is a cyclic quadrilateral.
(Q.E.D.)

5
[a] $\because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments to the greater circle
$\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore 2 x-3=15$
$\therefore 2 x=18$
$\therefore x=9 \mathrm{~cm}$.
$, \because \overline{\mathrm{AC}}, \overline{\mathrm{AD}}$ are two tangent-segments to the smaller circle
$\therefore \mathrm{AC}=\mathrm{AD}$
$\therefore y-2=15$
$\therefore y=17 \mathrm{~cm}$.
(The req.)
[b] $\because \mathrm{ABCD}$ is a parallelogram
$\therefore A D=B C \quad, \because B E=A D$
$\therefore B C=B E$
$\therefore \ln \triangle \mathrm{BCE}: \mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{BEC})$
, $\because m(\angle C)=m(\angle B A D)$ (from the parallelogram)
$\therefore \mathrm{m}(\angle \mathrm{BAD})=\mathrm{m}(\angle \mathrm{BED})$ and they are drawn on $\overline{B D}$ and on one side of it
\therefore The figure $A B D E$ is a cyclic quadrilateral.
(Q.E.D.)

Damietta

1 b \square (3) c 4 b
(5) a
[6]
[a] $\because \overrightarrow{\mathrm{AD}}$ is a tangent
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AD}} \quad \therefore \mathrm{m}(\angle \mathrm{MDA})=90^{\circ}$
, $\because \mathrm{E}$ is a midpoint of $\overline{\mathrm{BC}}$
$\therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{BC}} \quad \therefore \mathrm{m}(\angle \mathrm{MEA})=90^{\circ}$
From the quadrilateral ADME
$\therefore \mathrm{m}(\angle \mathrm{DME})=360^{\circ}-\left(65^{\circ}+90^{\circ}+90^{\circ}\right)=115^{\circ}$
(The req.)
[b]

\therefore We can draw two circles.

3

$[\mathrm{a}] \because \mathrm{m}(\angle \mathrm{BMC})=2 \mathrm{~m}(\angle \mathrm{~A})$
(central and inscribed angles subtended by $\overparen{B C}$)
$\therefore \mathrm{m}(\angle \mathrm{BMC})=2 \times 30^{\circ}=60^{\circ} \quad$ (First req.)
In $\triangle M B C: \because M B=M C=r$
, $\mathrm{m}(\angle \mathrm{BMC})=60^{\circ}$
$\therefore \triangle \mathrm{MBC}$ is equilateral.
(Second req.)
[b] $\because \overline{\mathrm{AD}} / / \overline{\mathrm{BC}}$
$\therefore m(\widehat{A B})=m(\overparen{D C}) \quad \therefore A B=D C$
$, \because \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}} \quad, \overline{\mathrm{MY}} \perp \overline{\mathrm{DC}}$

$$
\therefore M X=M Y
$$

(Q.E.D.)

4

[a] $\because \overrightarrow{\mathrm{CB}}$ is a tangent
$\therefore \mathrm{m}(\angle \mathrm{BAE})=\mathrm{m}(\angle \mathrm{CBE})$
(inscribed and tangency angles subtended by $\overparen{B E}$)
,$\because m(\widehat{B E})=m(\widehat{E A})$
$\therefore \mathrm{m}(\angle \mathrm{BAE})=\mathrm{m}(\angle \mathrm{EAF})$
$\therefore m(\angle C B D)=m(\angle C A D)$ and they are drawn on $\overline{\mathrm{CD}}$ and on one side of it
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral
(Q.E.D.)
[b] $\because \mathrm{m}(\angle \mathrm{XYZ})$ (tangency)
$=m(\angle \mathrm{~L})$ (inscribed) $=70^{\circ}$
$, \because \overrightarrow{X Y}, \overrightarrow{X Z}$ are two tangents
$\therefore X Y=X Z$
$\therefore \mathrm{m}(\angle \mathrm{XYZ})=\mathrm{m}(\angle \mathrm{XZY})=70^{\circ}$
$\ln \triangle X Y Z:$
$\therefore \mathrm{m}(\angle \mathrm{X})=180^{\circ}-2 \times 70^{\circ}=40^{\circ} \quad$ (First req.)
In $\triangle L Z Y: \because Y Z=L Z$
$\therefore \mathrm{m}(\angle \mathrm{LYZ})=\mathrm{m}(\angle \mathrm{L})=70^{\circ}$
,$\because m(\angle L Y Z)=m(\angle X Z Y)$ and they are alternate angles.
$\therefore \overline{\mathrm{XZ}} / / \overline{\mathrm{YL}}$
(Second req.)

Rூlmon

5

[a] $\ln \mathrm{ABC}$:
$\because A C=B C$
$\therefore m(\angle B)=m(\angle C A B)(1)$

, $\because \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}, \overline{\mathrm{AC}}$ is transversal
$\therefore m(\angle D C A)=m(\angle C A B)$ (alternate angles) (2)
From (1) and (2) : $\therefore m(\angle \mathrm{DCA})=m(\angle B)$
$\therefore \overrightarrow{\mathrm{CD}}$ is a tangent to the circle circumscribed about the triangle ABC
(Q.E.D.)
[b] \because LMNE is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{MLN})=\mathrm{m}(\angle \mathrm{MEN})=35^{\circ} \quad$ (First req.)
, $\because m(\angle E L N)=m(\angle E L M)-m(\angle M L N)$
$\therefore \mathrm{m}(\angle \mathrm{ELN})=80^{\circ}-35^{\circ}=45^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{EMN})=\mathrm{m}(\angle \mathrm{ELN})=45^{\circ}$ (Second req.)

13) Kafr El-Sheikh

1 a
(2) c
(3) $\mathrm{c} \quad 4 \mathrm{~b}$
(5) b
(6) d
a
[a] Construction :
Draw $\overline{\mathrm{MC}}$
Proof:
$\because \overrightarrow{\mathrm{MX}} \perp \overline{\mathrm{BC}}$
$\therefore \mathrm{X}$ is the midpoint of $\overline{\mathrm{BC}}$
$\therefore \mathrm{XC}=8 \mathrm{~cm}$.
In \triangle XMC :
$\because m(\angle \mathrm{CXM})=90^{\circ}, \mathrm{CM}=\mathrm{r}=10 \mathrm{~cm}$.
$\therefore M X=\sqrt{(C M)^{2}-(X C)^{2}}=\sqrt{100-64}$

$$
=\sqrt{36}=6 \mathrm{~cm} .
$$

$\therefore \mathrm{XE}=10-6=4 \mathrm{~cm}$.
(First req.)
$\because \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$
From the quadrilateral BDMX :
$\therefore \mathrm{m}(\angle \mathrm{ABC})=360^{\circ}-\left(90^{\circ}+90^{\circ}+110^{\circ}\right)=70^{\circ}$
(Second req.)
[b] $\because \overrightarrow{\mathrm{BA}}$ is a tangent
$\therefore \overline{\mathrm{MA}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{BAM})=90^{\circ}$
In $\triangle \mathrm{AMB}: \mathrm{m}(\angle \mathrm{AMB})=180^{\circ}-\left(90^{\circ}+20^{\circ}\right)=70^{\circ}$
,$\because \mathrm{m}(\angle \mathrm{ADE})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{AME})$
(inscribed and central angles subtended by $\overparen{\mathrm{AE}}$)
$\therefore m(\angle \mathrm{ADB})=\frac{1}{2} \times 70^{\circ}=35^{\circ} \quad$ (The req.)
3
[a] $\because \overline{\mathrm{AD}} / / \overline{\mathrm{CB}} \quad \therefore \mathrm{m}(\widehat{\mathrm{BD}})=\mathrm{m}(\widehat{\mathrm{AC}})$
$\therefore \mathrm{m}(\angle \mathrm{BAD})=\mathrm{m}(\angle \mathrm{CDA})$
$\therefore \ln \triangle \mathrm{ADE}: E A=E D$
(Q.E.D.)
[b] $\because \overrightarrow{\mathrm{EA}}, \overrightarrow{\mathrm{EB}}$ are two tangents to the circle
$\therefore \mathrm{EA}=\mathrm{EB}$
In $\triangle \mathrm{ABE}$:
$\therefore \mathrm{m}(\angle \mathrm{EAB})=\mathrm{m}(\angle \mathrm{EBA})=\frac{180^{\circ}-50^{\circ}}{2}=65^{\circ}$
, $\because \mathrm{m}(\angle \mathrm{ADC})$ (inscribed) $=m(\angle C A E)($ tangency $)=115^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BAC})=115^{\circ}-65^{\circ}=50^{\circ}$
$\because m(\angle A E B)=m(\angle B A C)$
$\therefore \overrightarrow{\mathrm{AC}}$ is a tangent to the circle passing through the points A, B and E
(Q.E.D.)

4

[a] $\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{ADC})=\mathrm{m}(\angle \mathrm{ABE})=110^{\circ}$
,$\because m(\angle \mathrm{ADB})=\frac{1}{2} \mathrm{~m}(\widehat{\mathrm{AB}})=\frac{1}{2} \times 100^{\circ}=50^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BDC})=110^{\circ}-50^{\circ}=60^{\circ}$
(The req.)
[b] $\because \overrightarrow{\mathrm{FB}}, \overrightarrow{\mathrm{FD}}$ are two tangents to the circle
$\therefore \mathrm{BF}=\mathrm{DF}=4 \mathrm{~cm}$.
$\therefore A B=10+4=14 \mathrm{~cm}$.
$, \because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to the circle
$\therefore A C=A B=14 \mathrm{~cm}$.
$\therefore E C=14-9=5 \mathrm{~cm}$.
(The req.)

5

[a] $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$
,$\because \mathrm{Y}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$, $\because M X=M Y$
$\therefore \mathrm{AB}=\mathrm{AC}$
In $\triangle \mathrm{ABC}: \therefore \mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{B})=70^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-\left(70^{\circ}+70^{\circ}\right)=40^{\circ}$ (The req.)

Rnlmon mil
[b] $\ln \triangle \triangle \mathrm{ADE}, \mathrm{ACE}$
$\int \mathrm{AD}=\mathrm{AC}$
$\{m(\angle D A E)=m(\angle C A E)$
$\overline{\mathrm{AE}}$ is a common side
$\therefore \triangle \mathrm{ADE} \equiv \triangle \mathrm{ACE}$

, $\mathrm{m}(\angle \mathrm{ADE})=\mathrm{m}(\angle \mathrm{ACE})$
, $\because \mathrm{m}(\angle \mathrm{AFB})=\mathrm{m}(\angle \mathrm{ACB})$
(two inscribed angles subtended by $\overparen{A B}$)
$\therefore \mathrm{m}(\angle \mathrm{AFB})=\mathrm{m}(\angle \mathrm{ADE})$
\therefore BDEF is a cyclic quadrilateral.
(Q.E.D.)

14) El-Beheira

1 d (2) 3 b b 4 b b
2
[a] $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AC}} \quad \therefore \mathrm{m}(\angle \mathrm{AXY})=90^{\circ}$
, $\because \overrightarrow{\mathrm{YB}}$ is a tangent to the circle
$\therefore \overline{\mathrm{MB}} \perp \overline{\mathrm{BY}} \quad \therefore \mathrm{m}(\angle \mathrm{MBY})=90^{\circ}$
,$\because m(\angle A X Y)=m(\angle A B Y)$ and they are drawn on $\overline{\mathrm{AY}}$ and on one side of it
$\therefore \mathrm{AXBY}$ is a cyclic quadrilateral.
(Q.E.D.)
[b] $\because \overline{\mathrm{CM}} / / \overline{\mathrm{AB}}, \overrightarrow{\mathrm{AM}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{CMA})=\mathrm{m}(\angle \mathrm{A})=60^{\circ}$
, $\because m(\angle B)=\frac{1}{2} m(\angle C M A)$
(two inscribed angles subtended by $\overparen{A C}$)
$\therefore \mathrm{m}(\angle \mathrm{B})=\frac{1}{2} \times 60^{\circ}=30^{\circ}$
(The req.)

3

[a] $\because m(\angle B)=m(\angle C)$

$$
\therefore \mathrm{AB}=\mathrm{AC}
$$

, $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AC}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{MX}=\mathrm{MY}$
(Q.E.D.)

[b] Construction :

Draw $\overline{\mathrm{AM}}, \overline{\mathrm{ME}}$
Proof:
$\because \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DE}=\mathrm{AE}$
(The properties of the regular pentagon)
$\therefore \mathrm{m}(\widehat{\mathrm{AB}})=\mathrm{m}(\widehat{\mathrm{BC}})=\mathrm{m}(\widehat{\mathrm{CD}})=\mathrm{m}(\widehat{\mathrm{DE}})=\mathrm{m}(\widehat{\mathrm{AE}})$
\because measure of the circle $=360^{\circ}$
$\therefore \mathrm{m}(\widehat{\mathrm{AE}})=\frac{360^{\circ}}{5}=72^{\circ}$
(First req.)
$\therefore \mathrm{m}(\angle \mathrm{AME})=\mathrm{m}(\widehat{\mathrm{AE}})=72^{\circ}$
$\because \overrightarrow{\mathrm{AX}}$ is a tangent to the circle at A
$\therefore \mathrm{m}(\angle \mathrm{MAX})=90^{\circ}$
similarly $\mathrm{m}(\angle$ MEX $)=90^{\circ}$
In the quadrilateral MAXE :
$\therefore \mathrm{m}(\angle \mathrm{AXE})=360^{\circ}-\left(72^{\circ}+90^{\circ}+90^{\circ}\right)=108^{\circ}$
(Second req.)

4

[a] In $\triangle A M C: ~ \because A M=M C=r$
$\therefore \mathrm{m}(\angle \mathrm{MAC})=\mathrm{m}(\angle \mathrm{ACM})$
$\because m(\angle B A C)=m(\angle M A C)$
$\therefore \mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle \mathrm{ACM})$ and they are alternate angles.
$\therefore \overline{\mathrm{AB}} / / \overline{\mathrm{CM}}$
$\because \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{DM}} \perp \overline{\mathrm{CM}}$
(Q.E.D.)
[b] $\because \overrightarrow{\mathrm{AC}}$ is a tangent to the circle M at A
$\therefore \overrightarrow{\mathrm{MA}} \perp \overrightarrow{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{CAM})=90^{\circ}$
$\because \overrightarrow{\mathrm{BD}}$ is a tangent to the circle M at B
$\therefore \overrightarrow{\mathrm{MB}} \perp \overrightarrow{\mathrm{BD}}$
, $\because \overline{\mathrm{AB}} / / \overline{\mathrm{CM}}$

In $\triangle \triangle C A M, E B M$:
$\left[\mathrm{m}(\angle \mathrm{CAM})=\mathrm{m}(\angle \mathrm{EBM})=90^{\circ}\right.$
$\{\mathrm{m}(\angle \mathrm{AMC})=\mathrm{m}(\angle \mathrm{BME})$ (V.O.A.)
MA $=\mathrm{MB}$ (lengths of two radii)
\therefore The two triangles are congruent and we deduce that $\mathrm{CM}=\mathrm{EM}$
, $\because \mathrm{XM}=\mathrm{YM}$ (lengths of two radii)
, by subtracting
$\therefore \mathrm{CX}=\mathrm{YE}$
(Q.E.D.)

5

[a] $\because \overrightarrow{\mathrm{XA}}, \overrightarrow{\mathrm{XB}}$ are two tangents to the circle $\therefore \mathrm{XA}=\mathrm{XB}$
$\therefore \ln \triangle \mathrm{ABX}$
$m(\angle X A B)=m(\angle X B A)=\frac{180^{\circ}-50}{2}=65^{\circ}$
,$\because A B C D$ is a cyclic quadrilateral
$\mathrm{m}(\angle \mathrm{BAD})+\mathrm{m}(\angle \mathrm{DCB})=180^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BAD})=180^{\circ}-115^{\circ}=65^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{XAB})=\mathrm{m}(\angle \mathrm{BAD})$
$\therefore \overrightarrow{\mathrm{AB}}$ bisects $\angle \mathrm{DAX}$
(Q.E.D.1)
, $\because \mathrm{m}(\angle \mathrm{ADB})$ (inscribed)

$$
=\mathrm{m}(\angle X A B) \text { (tangency })=65^{\circ}
$$

$\therefore \mathrm{m}(\angle \mathrm{BAD})=\mathrm{m}(\angle \mathrm{ADB})$
$\therefore \mathrm{BD}=\mathrm{BA}$
(Q.E.D.2)
[b] $\because A B=C D$
$\therefore \mathrm{m}(\widehat{\mathrm{AB}})=\mathrm{m}(\widehat{\mathrm{CD}})$
Subtracting $m(\overparen{B D})$ from both sides
$\therefore \mathrm{m}(\widehat{\mathrm{AD}})=\mathrm{m}(\widehat{\mathrm{BC}})$
$\therefore \mathrm{m}(\angle \mathrm{ACD})=\mathrm{m}(\angle \mathrm{BAC})$
$\therefore \ln \triangle \mathrm{ACE}: \mathrm{AE}=\mathrm{CE}$
$\therefore \triangle \mathrm{ACE}$ is an isosceles triangle.
(Q.E.D.)

15 El-Fayoum

2
[a] $\because A B=C D$
, $\overline{\mathrm{ME}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MO}} \perp \overline{\mathrm{CD}}$
$\therefore \mathrm{ME}=\mathrm{MO}$

$$
\therefore x+2=6
$$

$\therefore x=4 \mathrm{~cm}$.
(First req.)
$\therefore \mathrm{CD}=\mathrm{AB}=3 \times 4+4=16 \mathrm{~cm}$. (Second req.)
[b] $\because m(\angle C)=\frac{1}{2} m(\angle A M B)$

$$
=\frac{1}{2} \times 90^{\circ}=45^{\circ}
$$

(inscribed and central angles subtended by $\overparen{A B}$)

,$\because m(\angle A)=\frac{1}{2}(\angle B M C)=\frac{1}{2} \times 130^{\circ}=65^{\circ}$
(inscribed and central angles subtended by $\overparen{B C}$)
$\therefore \mathrm{m}(\angle \mathrm{B})=180^{\circ}-\left(45^{\circ}+65^{\circ}\right)=70^{\circ}$ (The req.)

3
[a] Constraction :
Draw $\overline{\mathrm{MB}}$
Proof:
$\because \overrightarrow{\mathrm{AB}}$ is a tangent to the circle
$\therefore \overline{\mathrm{MB}} \perp \overrightarrow{\mathrm{AB}}$

$\therefore \mathrm{m}(\angle \mathrm{MBA})=90^{\circ}$
In $\triangle \mathrm{ABM}$:
$\mathrm{m}(\angle \mathrm{BMA})=180^{\circ}-\left(90^{\circ}+40^{\circ}\right)=50^{\circ}$
$\mathrm{m}(\angle \mathrm{BDC})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{BMC})=\frac{1}{2} \times 50^{\circ}=25^{\circ}$
(inscribed and central angles subtended by $\overparen{B C}$)
(The req.)
[b] $\because \mathrm{x}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AC}}$ $\therefore \mathrm{m}(\angle \mathrm{AXY})=90^{\circ}$
,$\because \overrightarrow{\mathrm{YB}}$ is a tangent to the circle
$\therefore \overline{\mathrm{MB}} \perp \overline{\mathrm{BY}} \quad \therefore \mathrm{m}(\angle \mathrm{MBY})=90^{\circ}$
, $\because \mathrm{m}(\angle A X Y)=\mathrm{m}(\angle A B Y)$ and they are drawn on $\overline{\mathrm{AY}}$ and on one side of it
$\therefore \mathrm{AXBY}$ is a cyclic quadrilateral (Q.E.D.)

4

[a] Construction :
Draw $\overline{\mathrm{XM}}, \overline{\mathrm{YM}}, \overline{\mathrm{ZM}}$
, $\overline{\mathrm{AY}}, \overline{\mathrm{CM}}$
Proof:

$\because \overline{\mathrm{XM}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{YM}} \perp \overline{\mathrm{BC}}$
,$\overline{\mathrm{ZM}} \perp \overline{\mathrm{AC}}$
, $\because X M=Y M=Z M=r$
$\therefore \mathrm{AB}=\mathrm{BC}=\mathrm{AC}$
$\therefore \triangle \mathrm{ABC}$ is an equilateral triangle (First req.)
In $\triangle \mathrm{MYC}: \mathrm{m}(\angle \mathrm{MYC})=90^{\circ}$
$\therefore(\mathrm{YC})^{2}=(\mathrm{MC})^{2}-(M Y)^{2}=(4)^{2}-(2)^{2}=12$
$\therefore Y C=2 \sqrt{3} \mathrm{~cm} . \quad \therefore B C=4 \sqrt{3} \mathrm{~cm}$.
\therefore The area of $\triangle \mathrm{ABC}=\frac{1}{2} \times \mathrm{BC} \times \mathrm{AY}$
$=\frac{1}{2} \times 4 \sqrt{3} \times 6$
$=12 \sqrt{3} \mathrm{~cm}^{2}$. (Second req.)

Klnoneris
[b] $\because m(\angle \mathrm{BCD})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{BMD})$
(inscribed and central angles subtended by $\overparen{B D}$)
$\therefore \mathrm{m}(\angle \mathrm{BCD})=\frac{1}{2} \times 130^{\circ}=65^{\circ}$
$\because \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}, \overrightarrow{\mathrm{BC}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{BCD})=65^{\circ}$ (alternate angles)
$, \because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent segments
$\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{m}(\angle \mathrm{ACB})=\mathrm{m}(\angle \mathrm{ABC})=65^{\circ}$
From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{ACB})=\mathrm{m}(\angle \mathrm{BCD})=65^{\circ}$
$\therefore \overrightarrow{\mathrm{CB}}$ bisects $\angle \mathrm{ACD}$
(Q.E.D.)

5

[a] $\because \overrightarrow{\mathrm{AD}}$ is a tangent to the circle $\therefore \mathrm{m}$ ($\angle \mathrm{DAC}$) (tangency) $=m(\angle B)$ (inscribed)
(1)
$, \because \overline{\mathrm{XY}} / / \overline{\mathrm{BC}}, \overrightarrow{\mathrm{AB}}$
is a transversal
$\therefore \mathrm{m}(\angle \mathrm{AXY})=\mathrm{m}(\angle \mathrm{B})$

(2)
(corresponding angles)
From (1) and (2) : $\therefore \mathrm{m}(\angle \mathrm{AXY})=\mathrm{m}(\angle \mathrm{DAC})$
$\therefore \overrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the points A, X and Y
(Q.E.D.)
[b] $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{CXM})=90^{\circ}$
, $\because \overrightarrow{\mathrm{BD}}$ is a tangent to the circle
$\therefore \overline{\mathrm{BD}} \perp \overline{\mathrm{AB}}$
$\therefore \mathrm{m}(\angle \mathrm{DBM})=90^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CXM})+\mathrm{m}(\angle \mathrm{DBM})=180^{\circ}$
$\therefore \mathrm{XMBD}$ is a cyclic quadrilateral
(Q.E.D.I)
, $\because \angle B M Y$ is an exterior angle of the cyclic quadrilateral XMBD
$\therefore \mathrm{m}(\angle \mathrm{BMY})=\mathrm{m}(\angle \mathrm{D})$
,$\because m(\angle B A Y)=\frac{1}{2} m(\angle B M Y)$
(inscribed and central angles subtended the same arc $\overparen{B Y}$)
From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{BAY})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{D})$
(Q.E.D.2)

1 c
(2) 3 c (4) 5 c b b

2
[a] $\because \mathrm{m}(\angle \mathrm{AMB})=2 \mathrm{~m}(\angle \mathrm{ADB})=2 \times 70^{\circ}=140^{\circ}$ (central and inscribed angles subtended by $\overparen{A B}$)
In $\triangle \mathrm{ABM}: \because \overline{\mathrm{MC}} \perp \overline{\mathrm{AB}}$
, $M A=M B=r$
$\therefore \mathrm{m}(\angle \mathrm{AMC})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{AMB})=\frac{1}{2} \times 140=70$
(The req.)
[b] $\because A B=C D$
$, \overline{M X} \perp \overline{\mathrm{AB}} \quad, \overline{\mathrm{NY}} \perp \overline{\mathrm{CD}}$
$\therefore M X=N Y, \overline{M X} / / \overline{N Y}$
$\therefore \mathrm{MXYN}$ is a rectangle
(Q.E.D.)

3

[a] $\because D$ is the midpoint of $\overline{A B}$
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$
$\therefore \mathrm{m}(\angle \mathrm{ADM})=90^{\circ}$
,$\because E$ is the midpoint of $\overline{A C}$
$\therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{AEM})=90^{\circ}$
\therefore ADME is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{DME})=360^{\circ}-\left(90^{\circ}+90^{\circ}+50^{\circ}\right)=130^{\circ}$
(The req.)
[b] $\because A B=B C$
$\therefore m(\angle B A C)=m(\angle A C B)=55^{\circ}$
, $\because \mathrm{m}(\angle \mathrm{BDC})=\mathrm{m}(\angle \mathrm{BAC}) 55^{\circ}$ and they are drawn on $B C$ and on one side of it
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral
(Q.E.D.)

4
[a] $\because m(\angle \mathrm{ACB})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{AMB})$
(inscribed and central angles subtended the same $\operatorname{arc} \widehat{\mathrm{AB}}$)
$\therefore \mathrm{m}(\angle \mathrm{ACB})=\frac{1}{2} \times 120^{\circ}=60^{\circ}$
$\because \overline{\mathrm{ED}} / / \overline{\mathrm{AB}}$
$\therefore \mathrm{m}(\widehat{\mathrm{AC}})=\mathrm{m}(\overparen{\mathrm{BC}})$
$\therefore \mathrm{AC}=\mathrm{BC}$
From (1) and (2) :
$\therefore \triangle \mathrm{CAB}$ is an equilateral triangle.
(Q.E.D.)

Rnlon tris
[b] Construction :
Draw $\overline{\mathrm{BC}}$
Proof:
$\because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two
tangents to the circle

$\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})$
,$\because \mathrm{m}(\angle \mathrm{ABC})$ (tangency)

$$
=\mathrm{m}(\angle \mathrm{BDC}) \text { (inscribed })=70^{\circ}
$$

$\therefore \ln \triangle \mathrm{ABC}$:
$\mathrm{m}(\angle \mathrm{A})=180^{\circ}-\left(70^{\circ}+70^{\circ}\right)=40^{\circ} \quad$ (The req.)

5

[a] $\because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments to the circle $\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})$
$\ln \triangle B C D: \because B C=B D$
$\therefore \mathrm{m}(\angle \mathrm{BDC})=\mathrm{m}(\angle \mathrm{BCD})$
, $\because \mathrm{m}(\angle \mathrm{BDC})$ (inscribed)

$$
\begin{equation*}
=\mathrm{m}(\angle \mathrm{ABC})(\text { tangency }) \tag{3}
\end{equation*}
$$

From (1), (2) and (3):
$\therefore \mathrm{m}(\angle \mathrm{A})=\mathrm{m}(\angle \mathrm{CBD})$
$\therefore \overrightarrow{\mathrm{BD}}$ is a tangent to the circle passing through the vertices of $\triangle A B C$
(Q.E.D.)
[b] $\because \overrightarrow{\mathrm{BC}}$ is a tangent to the circle
$\therefore \overline{\mathrm{AB}} \perp \overline{\mathrm{BC}}$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=90^{\circ}$
, $\because E$ is the midpoint of $\overline{A D}$
$\therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{AD}}$
$\therefore \mathrm{m}(\angle \mathrm{CEM})=90^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ABC})+\mathrm{m}(\angle \mathrm{CEM})=180^{\circ}$
\therefore EMBC is a cyclic quadrilateral
(Q.E.D.)

17) El-Menia

1
(2) 3 b 4 b 5
(6) a

2
[a] $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$
,$\because \mathrm{Y}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$

$$
, \because A B=A C
$$

$\therefore M X=M Y$, $\because M E=M D=r$
$\therefore X E=Y D$
(Q.E.D.)
[b] $\ln \triangle A B C: \because A B=A D$
$\therefore \mathrm{m}(\angle \mathrm{ABD})=\mathrm{m}(\angle \mathrm{ADB})=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-2 \times 30^{\circ}=120^{\circ}$
,$\because \mathrm{m}(\angle \mathrm{A})+\mathrm{m}(\angle \mathrm{C})=120^{\circ}+60^{\circ}=180^{\circ}$
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral
(Q.E.D.)
[a] Construction :
Draw $\overline{\mathrm{AM}}$
Proof :
$\because \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$

$\therefore \mathrm{m}(\angle \mathrm{MDB})=90^{\circ}$
, $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{BC}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{BC}}$
$\therefore \mathrm{m}(\angle \mathrm{MXB})=90^{\circ}$
In the quadrilateral MDXB :
$\therefore \mathrm{m}(\angle \mathrm{DMX})=360^{\circ}-\left(56^{\circ}+90^{\circ}+90^{\circ}\right)=124^{\circ}$ (First req.)
$\because \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$
$\therefore \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \mathrm{AD}=4 \mathrm{~cm}$.
In $\triangle \mathrm{ADM}$:
$(M D)^{2}=(A M)^{2}-(A D)^{2}=(5)^{2}-(4)^{2}=25-16=9$
$\therefore \mathrm{MD}=3 \mathrm{~cm}$.
$\therefore \mathrm{DE}=5-3=2 \mathrm{~cm}$.
(Second req.)
[b] $\because \overrightarrow{\mathrm{AD}}$ is a tangent to the circle
$\therefore \mathrm{m}$ ($\angle \mathrm{DAB}$) (tangency) $=\mathrm{m}(\angle \mathrm{ACB})$ (inscribed)
$, \because \overline{\mathrm{XY}} / / \overline{\mathrm{BC}}, \overline{\mathrm{YC}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{AYX})=\mathrm{m}(\angle \mathrm{ACB})$
(corresponding angles)
\therefore From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{DAB})=\mathrm{m}(\angle \mathrm{AYX})$
$\therefore \overrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the points A, X and Y
(Q.E.D.)

4
[a] $\because \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{m}(\widehat{\mathrm{AB}})=\mathrm{m}(\widehat{\mathrm{AC}})$
$\therefore \mathrm{m}(\angle \mathrm{AEB})=\mathrm{m}(\angle \mathrm{AEC})$
(Q.E.D.)
[b] $\because \overrightarrow{\mathrm{XA}}, \overrightarrow{\mathrm{XB}}$ are two tangents to the circle
$\therefore \mathrm{XA}=\mathrm{XB}$
$\therefore \mathrm{m}(\angle \mathrm{XAB})=\mathrm{m}(\angle \mathrm{XBA})=\frac{180^{\circ}-70}{2}=55^{\circ}$ (1)
,$\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{DAB})=180^{\circ}-125^{\circ}=55^{\circ}$
From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{DAB})=\mathrm{m}(\angle \mathrm{XAB})$
(Q.E.D.)

5
[a] Construction :
Draw $\overline{\mathrm{MB}}$

Proof:

$\because M A=M B=r$
,$\overline{\mathrm{MC}} \perp \overline{\mathrm{AB}}$
$\therefore \overrightarrow{\mathrm{MC}}$ bisects $\angle \mathrm{AMB}$
$\therefore \mathrm{m}(\angle \mathrm{AMC})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{AMB})$
,$\because m(\angle A D B)=\frac{1}{2} m(\angle A M B)$
(inscribed and central angles subtended by $\widehat{A B}$)
\therefore From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{AMC})=\mathrm{m}(\angle \mathrm{ADB})$
(Q.E.D.)
[b] $\because \ln \triangle \triangle \mathrm{ADE}, \mathrm{ACE}$
$\left\{\begin{array}{l}\mathrm{AD}=\mathrm{AC} \\ \mathrm{m}(\angle \mathrm{DAE})=\mathrm{m}(\angle \mathrm{CAE}) \\ \overline{\mathrm{AE}} \text { is a common side }\end{array}\right.$
$\therefore \triangle \mathrm{ADE} \equiv \triangle \mathrm{ACE}$
$\therefore \mathrm{m}(\angle \mathrm{ADE})=\mathrm{m}(\angle \mathrm{ACE})$
, $\because \mathrm{m}(\angle \mathrm{AFB})=\mathrm{m}(\angle \mathrm{ACB})$
(two inscribed angles subtended by $\widehat{A B}$)
$\therefore \mathrm{m}(\angle \mathrm{AFB})=\mathrm{m}(\angle \mathrm{ADE})$
\therefore BDEF is a cyclic quadrilateral.
(Q.E.D.)
[a] $\because \overrightarrow{\mathrm{MN}}$ is the line of centres
, $\overline{\mathrm{AB}}$ is the common chord.
$\therefore \overline{\mathrm{AB}} \perp \overline{\mathrm{MN}}$
$\therefore \mathrm{m}(\angle \mathrm{BEN})=90^{\circ}$

In the quadrilateral CDNE :
$\therefore \mathrm{m}(\angle \mathrm{CDN})=360^{\circ}-\left(140^{\circ}+40^{\circ}+90^{\circ}\right)=90^{\circ}$
$\therefore \overrightarrow{\mathrm{ND}} \perp \overrightarrow{\mathrm{CD}}$
$\therefore \overrightarrow{\mathrm{CD}}$ is a tangent to the circle N at D
(Q.E.D.)
[b] $\because \mathrm{AB}=\mathrm{CD}$ (properties of the rectangle)
,$\because C E=C D$
$\therefore \mathrm{AB}=\mathrm{CE}$
$\therefore \mathrm{m}(\widehat{\mathrm{AB}})=\mathrm{m}(\widehat{\mathrm{CE}})$ and adding $\mathrm{m}(\overparen{\mathrm{BE}})$ to both sides.
$\therefore \mathrm{m}(\widehat{\mathrm{AE}})=\mathrm{m}(\widehat{\mathrm{BC}})$
$\therefore \mathrm{AE}=\mathrm{BC}$
(Q.E.D.)

3

[a] State by yourself.
[b] $\because \overrightarrow{X Y}, \overrightarrow{X Z}$ are two tangents to the circle
$\therefore \mathrm{XY}=\mathrm{XZ}$
$\therefore \ln \triangle X Y Z$:
$\mathrm{m}(\angle X Y Z)=\mathrm{m}(\angle X Z Y)=\frac{180^{\circ}-50^{\circ}}{2}=65^{\circ}$
,\because YZDE is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{EYZ})+\mathrm{m}(\angle \mathrm{D})=180^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{EYZ})=180^{\circ}-115^{\circ}=65^{\circ}$
,$\because \mathrm{m}(\angle \mathrm{YEZ})$ (inscribed)
$=\mathrm{m}(\angle \mathrm{XYZ})$ (tangency) $=65^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{EYZ})=\mathrm{m}(\angle \mathrm{YEZ})$
$\therefore \ln \triangle Y Z E: Z E=Z Y$
(Q.E.D.)

4

[a] $\ln \triangle \mathrm{ABC}: \because \mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{C})$
$\therefore \mathrm{AB}=\mathrm{AC}$
,$\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$
,$\because \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
$\therefore M X=M Y$
(Q.E.D.)
[b] $\because \overrightarrow{X Y}$ is a tangent to the circle
$\therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{XY}}$
$\therefore \mathrm{m}(\angle \mathrm{XYM})=90^{\circ}$
$\ln \triangle X Y M$:
$\therefore \mathrm{m}(\angle \mathrm{XMY})=180^{\circ}-\left(90^{\circ}+40^{\circ}\right)=50^{\circ}$

, $\because m(\angle \mathrm{YDC})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{YMC})$ (inscribed and central angles subtended by $\widehat{Y C}$) $\therefore \mathrm{m}(\angle \mathrm{YDC})=\frac{1}{2} \times 50^{\circ}=25^{\circ}$
(The req.)

5

[a] In $\triangle \mathrm{ABC}: \because \mathrm{CB}=\mathrm{AC}$
$\therefore \mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle \mathrm{ABC})=65^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CAD})=130^{\circ}-65^{\circ}=65^{\circ}$
, $\because \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{CAD})=65^{\circ}$
$\therefore \overrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the vertices of the triangle $A B C$
(Q.E.D.)
[b] $\because \overrightarrow{\mathrm{XY}} / / \overrightarrow{\mathrm{BD}}, \overrightarrow{\mathrm{AB}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{DBX})=\mathrm{m}(\angle \mathrm{YXB})$ (alternate angles)
, $\because \mathrm{m}(\angle \mathrm{C})$ (inscribed)

$$
\begin{equation*}
=\mathrm{m}(\angle \mathrm{ABD}) \text { (tangency) } \tag{2}
\end{equation*}
$$

From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{YXB})$
$\therefore \mathrm{AXYC}$ is a cyclic quadrilateral.
(Q.E.D.)
19) Souhag

1
(1) b c (3) d (4) c [5] b (6)

2
[a] $\because \mathrm{m}(\angle \mathrm{AMB})=90^{\circ} \quad \therefore \mathrm{m}(\widehat{\mathrm{AB}})=90^{\circ}$
, $\because \mathrm{r}=7 \mathrm{~cm}$.
\therefore The length of $\widehat{A B}=\frac{90^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times 7=11 \mathrm{~cm}$. (The req.)
[b] $\because \overrightarrow{\mathrm{AB}}$ is a tangent
$\therefore \overrightarrow{\mathrm{MA}} \perp \overrightarrow{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{MAB})=90^{\circ}$
, $\because E$ is the midpoint of $\overline{D C}$
$\therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{DC}}$
$\therefore \mathrm{m}(\angle \mathrm{MEB})=90^{\circ}$
From the quadrilateral ABEM :
$\therefore \mathrm{m}(\angle \mathrm{EMA})=360^{\circ}-\left(50^{\circ}+90^{\circ}+90^{\circ}\right)=130^{\circ}$
(The req.)

3

[a] State by yourself.
[b] $\because \angle C B E$ is an exterior angle of the cyclic quadrilateral ABCD
$\therefore \mathrm{m}(\angle \mathrm{ADC})=\mathrm{m}(\angle \mathrm{CBE})=85^{\circ}$
,$\because \mathrm{m}(\angle \mathrm{ADB})$ (inscribed) $=\frac{1}{2} \mathrm{~m}(\widehat{\mathrm{AB}})$

$$
=\frac{1}{2} \times 110^{\circ}=55^{\circ}
$$

$\therefore \mathrm{m}(\angle \mathrm{BDC})=85^{\circ}-55^{\circ}=30^{\circ}$
(The req.)
4
$[\mathrm{a}] \because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{CD}}$ are two tangents to the circles M, N
In circle M
$\mathrm{BF}=\mathrm{DF}$
, in circle $\mathrm{N}: \mathrm{AF}=\mathrm{CF}$
Subtracting (1) from (2) :
$\therefore \mathrm{AF}-\mathrm{BF}=\mathrm{CF}-\mathrm{DF}$
$\therefore A B=C D$
(Q.E.D.)
[b] $\because \overrightarrow{\mathrm{AB}}$ is a tangent to the circle
$\therefore \overline{\mathrm{MB}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{ABM})=90^{\circ}$
$\ln \triangle \mathrm{ABM}$:
$\therefore \mathrm{m}(\angle \mathrm{AMB})=180^{\circ}-\left(40^{\circ}+90^{\circ}\right)=50^{\circ}$
, $\because \mathrm{m}(\angle \mathrm{BDC})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{BMC})$
(inscribed and central angles subtended by $\overparen{B C}$)
$\therefore \mathrm{m}(\angle \mathrm{BDC})=\frac{1}{2} \times 50^{\circ}=25^{\circ} \quad$ (The req.)

5

[a] $\because \mathrm{AB}=\mathrm{CD}, \overline{\mathrm{ME}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MF}} \perp \overline{\mathrm{CD}}$
$\therefore \mathrm{ME}=\mathrm{MF}$
$\therefore x+2=6$
$\therefore x=4 \mathrm{~cm}$.
(First req.)
,$\overline{\mathrm{CD}}=3 \times 4+4=16 \mathrm{~cm}$. (Second req.)
[b] $\because \overline{\mathrm{XY}} / / \overrightarrow{\mathrm{BD}}, \overrightarrow{\mathrm{AB}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{DBX})=\mathrm{m}(\angle \mathrm{BXY})$
(alternate angles)
, $\because \mathrm{m}(\angle \mathrm{C})$ (inscribed)
$=\mathrm{m}(\angle \mathrm{ABD})$ (tangency)
From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{BXY})$
$\therefore \mathrm{AXYC}$ is a cyclic quadrilateral.
(Q.E.D.)

20. Qena

1
1 b (2) 3 m 4a 5b 5 d
2
[a] The measure of the arc $=45^{\circ} \times 2=90^{\circ}$
, its length $=\frac{90^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times 7$

$$
=11 \mathrm{~cm} .
$$

(The req.)
[b] $\because \overrightarrow{\mathrm{DB}}, \overrightarrow{\mathrm{DA}}$ are two tangent to the circle M
$\therefore \mathrm{DB}=\mathrm{DA}$
(1)
$, \because \overrightarrow{\mathrm{DC}}, \overrightarrow{\mathrm{DA}}$ are two tangent to the circle N
$\therefore \mathrm{DC}=\mathrm{DA}$
From (1) and (2) : $\therefore \mathrm{DB}=\mathrm{DC}$
(Q.E.D.)

3
[a] Construction :
Draw $\overline{\mathrm{CD}}$
Proof:
$\because \mathrm{D}$ is the midpoint of $\widehat{\mathrm{AC}}$
$\therefore \mathrm{m}(\widehat{\mathrm{AD}})=\mathrm{m}(\widehat{\mathrm{DC}})=40^{\circ}$

$\because \overline{\mathrm{AB}}$ is a diameter
$\therefore \mathrm{m}(\overparen{\mathrm{BC}})=180^{\circ}-\left(40^{\circ}+40^{\circ}\right)=100^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{DAB})=\frac{1}{2} \mathrm{~m}(\overparen{\mathrm{BD}})=\frac{1}{2}\left(100^{\circ}+40^{\circ}\right)$

$$
=\frac{1}{2} \times 140^{\circ}
$$

$=70^{\circ}$ (First req.)
,$\because \mathrm{m}(\angle \mathrm{DCB})=\frac{1}{2} \mathrm{~m}(\widehat{\mathrm{BAD}})=\frac{1}{2}\left(180^{\circ}+40^{\circ}\right)$

$$
=\frac{1^{\circ}}{2} \times 220^{\circ}=110^{\circ}
$$

(Second req.)
[b] $\because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two chords in the circle.
, X and Y are the two midpoints of $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{MXA})=90^{\circ} \quad, \mathrm{m}(\angle \mathrm{MYA})=90^{\circ}$
In \triangle MDE: $\because \mathrm{DE}=\mathrm{MD}=\mathrm{ME}=\mathrm{r}$
$\therefore \mathrm{m}(\angle \mathrm{EMD})=60^{\circ}$
,$\because m(\angle X M Y)=m(\angle E M D)=60^{\circ}$
(V.O.A.)

In the quadrilateral $A X M Y$:
$\therefore \mathrm{m}(\angle \mathrm{BAC})=360^{\circ}-\left(90^{\circ}+90^{\circ}+60^{\circ}\right)=120^{\circ}$
(The req.)
[a] $\because \overline{\mathrm{AB}}$ is a diameter of the circle.
$\therefore \mathrm{m}(\angle \mathrm{ACB})=90^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ACE})=\mathrm{m}(\angle \mathrm{ADE})$
and they are drawn on $\overline{\mathrm{AE}}$ and on one side of it
$\therefore \mathrm{ACDE}$ is a cyclic quadrilateral. (Q.E.D.)
[b] Construction :
Draw $\overline{\mathrm{MX}}, \overline{\mathrm{MY}}$
Proof:
$\because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangents to the smaller circle.

$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
,$\because M X=M Y=r$ (radii of the smaller circle)
$\therefore A B=A C$
(Q.E.D.)

5

[a] $\because \mathrm{ABCD}$ is a cyclic quadr quadrilateral ilateral $\therefore \mathrm{m}(\angle \mathrm{BAD})=180^{\circ}-70^{\circ}=110^{\circ}$
,\because ABFE is a cyclic quadrilateral and $\angle B A D$ is exterior of it.
$\therefore \mathrm{m}(\angle \mathrm{EFB})=\mathrm{m}(\angle \mathrm{BAD})=110^{\circ} \quad$ (First req.)
$\therefore \mathrm{m}(\angle \mathrm{EFB})+\mathrm{m}(\angle \mathrm{BCD})=110^{\circ}+70^{\circ}=180^{\circ}$
and they are interior angle in the same side of $\stackrel{\rightharpoonup}{F C}$
$\therefore \overline{\mathrm{CD}} / / \overline{\mathrm{EF}}$
(Second req.)
[b] $\because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are tangent-segments to the circle
$\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{m}(\angle \mathrm{ACB})=\frac{180^{\circ}-60}{2}=60^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BEC})$ (inscribed)
$=\mathrm{m}(\angle \mathrm{ACB})$ (tangency) $=60^{\circ}$
,$\because E B C D$ is cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{EBC})=180^{\circ}-120^{\circ}=60^{\circ}$
\therefore From (2), (3) in $\triangle E B C$:
$\therefore \mathrm{m}(\angle \mathrm{BCE})=60^{\circ}$
$\therefore \triangle \mathrm{BCE}$ is equilateral
(Q.E.D. 1)

From (1), (3) : $\therefore \mathrm{m}(\angle \mathrm{ACB})=\mathrm{m}(\angle \mathrm{EBC})$ and they are alternate angles
$\therefore \overline{\mathrm{AC}} / / \overline{\mathrm{BE}}$
(Q.E.D. 2)

Klmol mils

Geometry

1 b
[2] c
(3) c

(4) a 5 d

6) b

2
[a] $\because A B=C D$
, $\overline{\mathrm{MH}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{ME}} \perp \overline{\mathrm{CD}}$
$\therefore \mathrm{MH}=\mathrm{ME}$
$\therefore x+2=6$
$\therefore x=4 \mathrm{~cm}$.
(First req.)
$\therefore \mathrm{AB}=\mathrm{CD}=3 \times 4+4=16 \mathrm{~cm}$. (Second req.)
[b] $\because \overline{\mathrm{AM}} / / \overline{\mathrm{CD}}, \overline{\mathrm{MD}}$ is a transversal.
$\therefore \mathrm{m}(\angle \mathrm{CDM})+\mathrm{m}(\angle \mathrm{AMD})=180^{\circ}$
(two interior angles in the same side of the transversal)
$\therefore \mathrm{m}(\angle \mathrm{CDM})=180^{\circ}-90^{\circ}=90^{\circ}$
, $\because M D=\frac{1}{2} M B$
, $M C=M B=r$
$\therefore \mathrm{MD}=\frac{1}{2} \mathrm{MC}$
$\therefore \mathrm{m}(\angle \mathrm{MCD})=30^{\circ}$
$, \because \overline{\mathrm{AM}} / / \overline{\mathrm{CD}}, \overline{\mathrm{CM}}$ is a transversal.
$\therefore \mathrm{m}(\angle \mathrm{AMC})=\mathrm{m}(\angle \mathrm{MCD})=30^{\circ}$
(alternate angles)
$\therefore \mathrm{m}(\widehat{\mathrm{AC}})=\mathrm{m}(\angle \mathrm{AMC})=30^{\circ}$
(The req.)

3
[a] $\because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent segments
$\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{m}(\angle \mathrm{ACB})=\mathrm{m}(\angle \mathrm{ABC})=\frac{180^{\circ}-50^{\circ}}{2}=65^{\circ}$
(First req.)
,$\because \overline{\mathrm{MC}}$ is a radius $\quad \therefore \overline{\mathrm{MC}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{ACM})=90^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BCM})=90^{\circ}-65^{\circ}=25^{\circ} \quad$ (Second req.)
[b] $\because \mathrm{m}(\widehat{\mathrm{AX}})=\mathrm{m}(\widehat{\mathrm{AY}})$
$\therefore \mathrm{m}(\angle \mathrm{ACX})=\mathrm{m}(\angle \mathrm{ABY})$
, \because They are drawn on $\overline{\mathrm{HD}}$ and on one side of it.
\therefore DBCH is a cyclic quadrilateral. (Q.E.D.1)
$\therefore \mathrm{m}(\angle \mathrm{DHB})=\mathrm{m}(\angle \mathrm{DCB})$
,$\because \mathrm{m}(\angle \mathrm{XCB})=\mathrm{m}(\angle \mathrm{XAB})$
(two inscribed angles subtended by $\widehat{X B}$)
$\therefore \mathrm{m}(\angle \mathrm{DHB})=\mathrm{m}(\angle \mathrm{XAB})$
(Q.E.D.2)

4
[a]

\therefore There are two solutions.

$$
\begin{equation*}
\text { [b] } \because \overline{\mathrm{BD}} / / \overline{\mathrm{XY}} \quad \therefore \mathrm{~m}(\widehat{\mathrm{BC}})=\mathrm{m}(\widehat{\mathrm{CD}}) \tag{1}
\end{equation*}
$$

$\therefore \mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle \mathrm{DAC})$
$\therefore \overrightarrow{\mathrm{AC}}$ bisects $\angle \mathrm{BAD}$
, $\because m(\angle C B D)=m(\angle D A C)$
(inscribed angles subtended by $\widehat{C D}$)
$\therefore \mathrm{m}(\angle \mathrm{CBH})=\mathrm{m}(\angle \mathrm{BAH})$
$\therefore \overrightarrow{\mathrm{BC}}$ is a tangent to the circle passing by the vertices of $\triangle A B H$
(Q.E.D.2)

5
[a] $\because \overline{\mathrm{AB}} / / \overline{\mathrm{DC}}, \overrightarrow{\mathrm{AD}}$ is a transversal to them.
$\therefore \mathrm{m}(\angle \mathrm{A})+\mathrm{m}(\angle \mathrm{D})=180^{\circ}$
but $\angle C E H$ is an exterior angle of the cyclic quadrilateral ABEH
$\therefore \mathrm{m}(\angle \mathrm{CEH})=\mathrm{m}(\angle \mathrm{A})$
From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{CEH})+\mathrm{m}(\angle \mathrm{D})=180^{\circ}$
\therefore HDCE is a cyclic quadrilateral.
(Q.E.D.)
[b] $\because \mathrm{m}(\widehat{\mathrm{BD}}$ The major $)=2 \mathrm{~m}(\angle \mathrm{BCD})$

$$
=2 \times 100^{\circ}=200^{\circ}
$$

$\therefore \mathrm{m}(\widehat{\mathrm{BCD}})=360^{\circ}-200^{\circ}=160^{\circ}$
,$\because \mathrm{m}(\overparen{\mathrm{HE}})=\mathrm{m}(\angle \mathrm{HME})=50^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})=\frac{1}{2}[\mathrm{~m}(\overparen{\mathrm{BCD}})-\mathrm{m}(\overparen{\mathrm{HE}})]$
$=\frac{1}{2}\left[160^{\circ}-50^{\circ}\right]=55^{\circ} \quad$ (The req.)

1 d (2) 3 a (4) 5 b (6)

2
[a] $\because \overrightarrow{\mathrm{AB}}$ is a tangent to the circle.
$\therefore \overrightarrow{\mathrm{MA}} \perp \overrightarrow{\mathrm{AB}}$
$\therefore \mathrm{m}(\angle \mathrm{MAB})=90^{\circ}$
In $\triangle \mathrm{ABM}$:
$\because(B M)^{2}=(A B)^{2}+(A M)^{2}=(8)^{2}+(6)^{2}=100$
$\therefore B M=10 \mathrm{~cm}$.
,$\because M A=M D=6 \mathrm{~cm}$.
$\therefore \mathrm{BD}=10-6=4 \mathrm{~cm}$.
(The req.)
[b] $\because \mathrm{ABCD}$ is a cyclic quadrilateral.
$\therefore \mathrm{m}(\angle \mathrm{BCD})+\mathrm{m}(\angle \mathrm{BAD})=180^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BCD})=180^{\circ}-120^{\circ}=60^{\circ} \quad$ (First req.)
$, \because \overrightarrow{\mathrm{BF}} / / \overline{\mathrm{DC}}, \overrightarrow{\mathrm{BC}}$ is a transversal.
$\therefore \mathrm{m}(\angle \mathrm{CBF})=\mathrm{m}(\angle \mathrm{BCD})=60^{\circ}$ (alternate angles)
$\therefore \mathrm{m}(\angle \mathrm{CBE})=60^{\circ}+55^{\circ}=115^{\circ}$
,$\because \angle \mathrm{CBE}$ is an exterior angle of a cyclic quadrilateral.
$\therefore \mathrm{m}(\angle \mathrm{ADC})=\mathrm{m}(\angle \mathrm{CBE})=115^{\circ}$ (Second req.)
[a] \because D is midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$
$, \because \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}, \mathrm{MD}=\mathrm{ME}$
$\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore \ln \triangle \mathrm{ABC}: \mathrm{m}(\angle \mathrm{ACB})=\mathrm{m}(\angle \mathrm{ABC})=65^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BAC})=180^{\circ}-\left(65^{\circ}+65^{\circ}\right)=50^{\circ}$
(The req.)
[b] $\because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to the circle
$\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore \ln \triangle \mathrm{ABC}$:
$\mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=\frac{180^{\circ}-50}{2}=65^{\circ}$
,$\because \mathrm{BCDE}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{EBC})+\mathrm{m}(\angle \mathrm{D})=180^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{EBC})=180^{\circ}-115^{\circ}=65^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{EBC})$
$\therefore \overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABE}$
(Q.E.D.)

4
[a] $\because \mathrm{AB}=\mathrm{CD}$ (properties of the rectangle)
,$\because C E=C D$
$\therefore \mathrm{AB}=\mathrm{CE}$
$\therefore \mathrm{m}(\widehat{\mathrm{AB}})=\mathrm{m}(\overparen{\mathrm{CE}})$ and adding $\mathrm{m}(\overparen{\mathrm{BE}})$
to both sides
$\therefore \mathrm{m}(\widehat{\mathrm{AE}})=\mathrm{m}(\widehat{\mathrm{BC}})$
$\therefore \mathrm{AE}=\mathrm{BC}$
(Q.E.D.)
[b] $\because \overrightarrow{\mathrm{AD}}$ is a tangent to the circle.
$\therefore \mathrm{m}(\angle \mathrm{DAB})$ (tangency)
$=\mathrm{m}(\angle A C B)$ (inscribed)
$, \because \overline{\mathrm{XY}} / / \overline{\mathrm{BC}}, \overline{\mathrm{YC}}$ is a transversal.
$\therefore \mathrm{m}(\angle \mathrm{A} Y \mathrm{X})=\mathrm{m}(\angle \mathrm{ACB})$
(corresponding angles)
From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{DAB})=\mathrm{m}(\angle \mathrm{AYX})$
$\therefore \overrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the vertices of $\triangle \mathrm{AXY}$
(Q.E.D.)

5

[a] $\because \mathrm{m}(\angle \mathrm{D})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{AMB})$
(inscribed and central angles substanded by $\widehat{A B}$)
$\therefore \mathrm{m}(\angle \mathrm{D})=\frac{1}{2} \times 140^{\circ}=70^{\circ} \quad$ (First req.)
$, \because \overline{\mathrm{AC}} / / \overline{\mathrm{DB}}, \overrightarrow{\mathrm{AD}}$ is transversal
$\therefore \mathrm{m}(\angle \mathrm{DAC})+\mathrm{m}(\angle \mathrm{D})=180^{\circ}$
(two interior angles in the same side of the transversal)
$\therefore \mathrm{m}(\angle \mathrm{DAC})=180^{\circ}-70^{\circ}=110^{\circ}$ (Second req.)
[b] $\ln \triangle A B D: \because A B=A D$
$\therefore \mathrm{m}(\angle \mathrm{BDA})=\mathrm{m}(\angle \mathrm{ABD})=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-\left(30^{\circ}+30^{\circ}\right)=120^{\circ}$
,$\because \mathrm{m}(\angle \mathrm{DCE})=\mathrm{m}(\angle \mathrm{A})=120^{\circ}$
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral.
(Q.E.D.)

New valley

1 b (2d 3 d 4) 5 c (6)

2
[a] \because ABCD is cyclic quadrilateral.
$\therefore \mathrm{m}(\angle \mathrm{ADC})=\mathrm{m}(\angle \mathrm{ABE})=100^{\circ}$
In $\triangle \mathrm{ACD}$:
$\therefore \mathrm{m}(\angle \mathrm{ACD})=180^{\circ}-\left(100^{\circ}+40^{\circ}\right)=40^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CAD})=\mathrm{m}(\angle \mathrm{ACD})$
$\therefore \mathrm{m}(\widehat{\mathrm{CD}})=\mathrm{m}(\widehat{\mathrm{AD}})$
(Q.E.D.)

Klmol mils
[b] $\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$
$\therefore \mathrm{m}(\angle \mathrm{AXM})=90^{\circ}$
, $\because \mathrm{Y}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{AYM})=90^{\circ}$
From the quadrilateral $A X M Y$:
$\mathrm{m}(\angle \mathrm{DMH})=360^{\circ}-\left(90^{\circ}+90^{\circ}+70^{\circ}\right)=110^{\circ}$
(First req.)

$$
\begin{array}{ll}
, \because A B=A C & \therefore M X=M Y \\
, \because M D=M H=r & \therefore X D=Y H
\end{array}
$$

(Second req.)

3
[a] $\because \overrightarrow{\mathrm{AD}}$ is a tangent to the circle.
$\therefore \mathrm{m}(\angle \mathrm{DAB})$ (tangency)
$=m(\angle A C B)$ (inscribed)
, $\because \overline{\mathrm{XY}} / / \overline{\mathrm{BC}}, \stackrel{\mathrm{YC}}{\mathrm{YC}}$ is a transversal.
$\therefore \mathrm{m}(\angle \mathrm{AYX})=\mathrm{m}(\angle \mathrm{ACB})$
(corresponding angles) (2)
From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{DAB})=\mathrm{m}(\angle \mathrm{AYX})$
$\therefore \overrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the points A, X and Y
(Q.E.D.)
[b] $\because m(\angle B C D)=\frac{1}{2} m(\angle B M D)$
(inscribed and central angles subteneded by $\overparen{B D}$)
$\therefore \mathrm{m}(\angle \mathrm{BCD})=\frac{1}{2} \times 130^{\circ}=65^{\circ}$
$\because \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}, \overline{\mathrm{BC}}$ is a transversal.
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{BCD})=65^{\circ}$
(altemate angles) (1)
$, \because \overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangent-segments
$\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{m}(\angle \mathrm{ACB})=\mathrm{m}(\angle \mathrm{ABC})=65^{\circ}$
From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{ACB})=\mathrm{m}(\angle \mathrm{BCD})=65^{\circ}$
$\therefore \overrightarrow{\mathrm{CB}}$ bisects $\angle \mathrm{ACD}$
(First req.)
$\ln \triangle \mathrm{ABC}$:
$\mathrm{m}(\angle \mathrm{A})=180^{\circ}-\left(65^{\circ}+65^{\circ}\right)=50^{\circ}$ (Second req.)
4
[a] $\because \overline{\mathrm{DE}} / / \overline{\mathrm{BC}}$
$\therefore \mathrm{m}(\overparen{\mathrm{DB}})=\mathrm{m}(\overparen{\mathrm{EC}})$
adding $\mathrm{m}(\overparen{\mathrm{BC}})$ to both sides.
$\therefore \mathrm{m}(\widehat{\mathrm{DC}})=\mathrm{m}(\overparen{\mathrm{EB}})$
$\therefore \mathrm{m}(\angle \mathrm{DAC})=\mathrm{m}(\angle \mathrm{BAE})$
(Q.E.D.)
[b] $\because \mathrm{m}(\widehat{\mathrm{AX}})=\mathrm{m}(\widehat{\mathrm{AY}})$
$\therefore \mathrm{m}(\angle \mathrm{ACX})=\mathrm{m}(\angle \mathrm{ABY})$ and they are drawn on $\overline{E D}$ and on one side of it.
\therefore BCED is a cyclic quadrilateral.

(Q.E.D. 1)
, $\because m(\angle D E B)=m(\angle D C B)$
,$\because m(\angle X C B)=m(\angle X A B)$
(two inscribed angles subtended by $\widehat{X B}$)
$\therefore \mathrm{m}(\angle \mathrm{DEB})=\mathrm{m}(\angle \mathrm{XAB})$
(Q.E.D. 2)

5

[a] State by yourself.
[b] $\because \overline{\mathrm{CD}}$ is a diameter in the circle.
$\therefore \mathrm{m}(\angle \mathrm{CXD})=90^{\circ}$
,$\because \overline{\mathrm{CD}} \perp \overline{\mathrm{AB}}$
$\therefore m(\angle B E C)=90^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CXD})=\mathrm{m}(\angle \mathrm{BEC})$
,$\angle B E C$ is an exterior angle of the figure XYEC
$\therefore \mathrm{XYEC}$ is a cyclic quadrilateral. (Q.E.D. 1)
$\therefore \mathrm{m}(\angle \mathrm{DYB})=\mathrm{m}(\angle \mathrm{XCD})$
, $\because \mathrm{m}(\angle \mathrm{DBX})=\mathrm{m}(\angle \mathrm{XCD})$
(two inscribed angles subtended by $\overparen{X D}$)
From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{DYB})=\mathrm{m}(\angle \mathrm{DBX})$
(Q.E.D. 2)

24) South Sinai

(2) b
(3) c
4) d
(5) a
[6] b
2
[a] $\because \mathrm{m}(\widehat{\mathrm{AB}})=50^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{D})=\frac{1}{2} \mathrm{~m}(\widehat{\mathrm{AB}})=\frac{1}{2} \times 50^{\circ}=25^{\circ}$
(First req.)
, $\mathrm{m}(\angle \mathrm{AMB})=\mathrm{m}(\overparen{\mathrm{AB}})=50^{\circ} \quad$ (Second req.)
[b] $\because \mathrm{m}(\widehat{\mathrm{BC}})=\mathrm{m}(\widehat{\mathrm{AD}})$
adding $m(\widehat{A C})$ to both sides
$\therefore \mathrm{m}(\overparen{\mathrm{AB}})=\mathrm{m}(\overparen{\mathrm{CD}}) \quad \therefore \mathrm{AB}=\mathrm{CD} \quad$ (Q.E.D.)

Klmonnuls

3

[a] $\because r_{1}=5 \mathrm{~cm} ., r_{2}=3 \mathrm{~cm}$.
,$\because r_{1}+r_{2}=5+3=8 \mathrm{~cm}$.
$\therefore r_{1}+r_{2}=M N$
\therefore The two circles are touching externally.
[b] $\because \overline{\mathrm{AB}}$ is a tangent-segment to the circle.
, $\overline{\mathrm{AC}}$ is a diameter of it.
$\therefore \overline{\mathrm{AB}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{BAC})=90^{\circ}$
, $\because m(\angle A C D)=\frac{1}{2} m(\angle A M D)$
(inscribed and central angles subtended by $\widehat{A D}$)
$\therefore m(\angle A C D)=\frac{1}{2} \times 60^{\circ}=30^{\circ}$
In $\triangle \mathrm{ABC}$:
$\mathrm{m}(\angle \mathrm{ABC})=180^{\circ}-\left(90^{\circ}+30^{\circ}\right)=60^{\circ}$ (First req.)
From (1) and (2) :
$\therefore \mathrm{AB}=\frac{1}{2} \mathrm{BC}$
(Second req.)
4
[a] $\ln \triangle \mathrm{ABC}: \because \mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{C})$
$\therefore \mathrm{AB}=\mathrm{AC}$
, $\because \mathrm{D}$ is midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$
, \because E is midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{MD}=\mathrm{ME}$
(Q.E.D.)
[b] $\ln \triangle \mathrm{ABE}: \because \mathrm{AB}=\mathrm{AE}$
$\therefore \mathrm{m}(\angle \mathrm{AEB})=\mathrm{m}(\angle \mathrm{B})$
, $\because m(\angle D)=m(\angle B)$
(properties of parallelogram)
$\therefore \mathrm{m}(\angle \mathrm{AEB})=\mathrm{m}(\angle \mathrm{D})$
\therefore The figure $A E C D$ is a cyclic quadrilateral.
(Q.E.D.)

5

[a] $\because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to the circle.
$\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore \ln \triangle \mathrm{ABC}$:
$\mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=\frac{180^{\circ}-50^{\circ}}{2}=65^{\circ}$
,$\because B C D E$ is a cyclic quadrilateral.
$\therefore \mathrm{m}(\angle \mathrm{EBC})+\mathrm{m}(\angle \mathrm{D})=180^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{EBC})=180^{\circ}-115^{\circ}=65^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{EBC})$
$\therefore \overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABE}$
(Q.E.D. 1)
, $\because m(\angle B E C)$ (inscribed)

$$
=m(\angle A B C)(\text { tangency })=65^{\circ}
$$

$\therefore \mathrm{m}(\angle \mathrm{EBC})=\mathrm{m}(\angle \mathrm{BEC})$
\therefore In $\triangle \mathrm{BCE}: \mathrm{CB}=\mathrm{CE}$
(Q.E.D. 2)
[b] $\because m(\overparen{B C})=2 \mathrm{~m}(\angle A)=2 \times 30^{\circ}=60^{\circ}$
,$\because m(\angle E)=\frac{1}{2}[m(\overparen{A D})-m(\overparen{B C})]$
$\therefore 50^{\circ}=\frac{1}{2}\left[\mathrm{~m}(\overparen{\mathrm{AD}})-60^{\circ}\right]$
$\therefore 100^{\circ}=\mathrm{m}(\widehat{\mathrm{AD}})-60^{\circ}$
$\therefore \mathrm{m}(\widehat{\mathrm{AD}})=160^{\circ}$
(First req.)
,$\because m(\angle \mathrm{AFD})=\frac{1}{2}[m(\overparen{A D})+m(\overparen{B C})]$
$\therefore m(\angle \mathrm{AFD})=\frac{1}{2}\left[160^{\circ}+60^{\circ}\right]=110^{\circ}$
(Second req.)

25) North Sinai

(5) c
(6) c
$[\mathrm{a}] \because \mathrm{AB}=\mathrm{CD}, \overline{\mathrm{MW}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MH}} \perp \overline{\mathrm{CD}}$
$\therefore M X=M Y$
, $\because M W=M H=r$
$\therefore W X=H Y$
(Q.E.D.)
[b] $\because \overrightarrow{\mathrm{CD}} / / \overline{\mathrm{BA}} \quad \therefore \mathrm{m}(\widehat{\mathrm{AC}})=\mathrm{m}(\widehat{\mathrm{BC}})$
$\therefore \mathrm{AC}=\mathrm{BC}$
(First req.)
, $\because \overline{\mathrm{AB}}$ is a diameter of the circle
$\therefore m(\angle A C B)=90^{\circ}$
In $\triangle \mathrm{ABC}: \therefore \mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{A})=\frac{180^{\circ}-90^{\circ}}{2}=45^{\circ}$
(Second req.)

3

[a] State by yourself.
[b] $\because D$ is the midpoint of $\overline{B W}$
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{BW}}$
$\therefore \mathrm{m}(\angle \mathrm{WDM})=90^{\circ}$
, $\because \overrightarrow{\mathrm{AC}}$ is a tangent to the circle
$\therefore \overline{\mathrm{AC}} \perp \overline{\mathrm{BC}} \quad \therefore \mathrm{m}(\angle \mathrm{ACM})=90^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{WDM})+\mathrm{m}(\angle \mathrm{ACM})=180^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{WDM})+\mathrm{m}(\angle \mathrm{ACM})=180^{\circ}$

Klmon mils
\therefore The figure $A D M C$ is a cyclic quadrilateral.
(Q.E.D. 1)
, $\because \angle \mathrm{CMH}$ is an exterior angle of the cyclic quadrilateral ADMC
$\therefore \mathrm{m}(\angle \mathrm{CMH})=\mathrm{m}(\angle \mathrm{A})$
,$\because \mathrm{m}(\angle \mathrm{CBH})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{CMH})$
(inscribed and central angles subtended by $\overparen{B C}$)
From (1) and (2) :
$\therefore \mathrm{m}(\angle \mathrm{CBH})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{~A})$
[a] $\because \mathrm{m}(\angle \mathrm{A})=\frac{1}{2}[\mathrm{~m}(\widehat{\mathrm{CH}})-\mathrm{m}(\widehat{\mathrm{BD}})]$
$\therefore 30^{\circ}=\frac{1}{2}\left[80^{\circ}-m(\widehat{B D})\right]$
$\therefore 60^{\circ}=80^{\circ}-\mathrm{m}(\widehat{\mathrm{BD}})$
$\therefore \mathrm{m}(\widehat{\mathrm{BD}})=80^{\circ}-60^{\circ}=20^{\circ}$
, $\because \overline{\mathrm{BC}}$ is a diameter in the circle
$\therefore \mathrm{m}(\widehat{\mathrm{BC}})=180^{\circ}$
$\therefore \mathrm{m}(\widehat{\mathrm{DH}})=360^{\circ}-\left[180^{\circ}+20^{\circ}+80^{\circ}\right]=80^{\circ}$
(The req.)
[b] $\because \mathrm{m}(\angle \mathrm{BDC})$ (inscribed)
$=m(\angle A B C)$ (tangency) $=70^{\circ}$
$\because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents
$\therefore A B=A C$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=70^{\circ}$
In $\triangle \mathrm{ABC}$:
$\therefore \mathrm{m}(\angle \mathrm{BAC})=180^{\circ}-\left(70^{\circ}+70^{\circ}\right)=40^{\circ}$
(The req.)

5

[a] $\ln \triangle \mathrm{ABD}: \because \mathrm{AB}=\mathrm{AD}$
$\therefore \mathrm{m}(\angle \mathrm{ABD})=\mathrm{m}(\angle \mathrm{ADB})=30^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-2 \times 30^{\circ}=120^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})+\mathrm{m}(\angle \mathrm{C})=120^{\circ}+60^{\circ}=180^{\circ}$
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral.
(Q.E.D.)
[b]

We can draw one circle only.

26) Red Sea

1

2
[a] $\because \mathrm{AB}=\mathrm{CD}, \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{CD}}$
$\therefore M X=M Y$
, $\because M H=M F=r$
$\therefore \mathrm{HX}=\mathrm{FY}$
(Q.E.D.)
[b] $\because m(\angle \mathrm{ADB})=\frac{1}{2} \mathrm{~m}(\widehat{\mathrm{AB}})=\frac{1}{2} \times 110^{\circ}=55^{\circ}$
,$\because A B C D$ is a cyclic quadrilateral.
$\therefore \mathrm{m}(\angle \mathrm{HBC})=\mathrm{m}(\angle \mathrm{CDB})+\mathrm{m}(\angle \mathrm{ADB})$
$=30^{\circ}+55^{\circ}=85^{\circ}$
(The req.)

©

[a] In $\triangle \mathrm{BMC}: \because \mathrm{MB}=\mathrm{MC}=\mathrm{r}$
$\therefore \mathrm{m}(\angle \mathrm{MCB})=\mathrm{m}(\angle \mathrm{MBC})=25^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BMC})=180^{\circ}-\left(25^{\circ}+25^{\circ}\right)=130^{\circ}$
,$\because m(\angle B A C)=\frac{1}{2} m(\angle B M C)$
(inscribed and central angles subtended by $\widehat{B C}$)
$\therefore m(\angle B A C)=\frac{1}{2} \times 130^{\circ}=65^{\circ} \quad$ (The req.)
[b] $\ln \triangle A B C: \because A B=A C$
$\therefore \mathrm{m}(\angle \mathrm{ACB})=\mathrm{m}(\angle \mathrm{ABC})=50^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-\left(50^{\circ}+50^{\circ}\right)=80^{\circ}$
,$\because m(\angle A)+m(\angle D)=80^{\circ}+100^{\circ}=180^{\circ}$
$\therefore \mathrm{ABDC}$ is a cyclic quadrilateral .
(Q.E.D.)

4
[a] $\because \overrightarrow{\mathrm{MN}}$ is the line of centres
, $\overline{\mathrm{AB}}$ is the common chord
$\therefore \overline{\mathrm{AB}} \perp \overline{\mathrm{MN}}$ $\therefore \mathrm{m}(\angle \mathrm{AXN})=90^{\circ}$
\because The sum of the measures of the interior angles of the quadrilateral $\mathrm{CDNX}=360^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CDN})=360^{\circ}-\left(125^{\circ}+55^{\circ}+90^{\circ}\right)=90^{\circ}$
$\therefore \overrightarrow{N D} \perp \overrightarrow{\mathrm{CD}}$
$\therefore \stackrel{\rightharpoonup}{\mathrm{CD}}$ is a tangent to the circle N at D
(Q.E.D.)
[b] $\because \overrightarrow{\mathrm{AX}}$ is a common tangent for two circles
$\therefore \mathrm{m}(\angle \mathrm{BDA})$ (inscribed)
$=m(\angle B A X)$ (tangency)
, $\mathrm{m}(\angle \mathrm{CHA})$ (inscribed)
$=\mathrm{m}(\angle \mathrm{CAX})$ (tangency)
$\therefore \mathrm{m}(\angle \mathrm{BDA})=\mathrm{m}(\angle \mathrm{CHA})$
and they are corresponding angles
$\therefore \overline{\mathrm{BD}} / / \overline{\mathrm{CH}}$
(Q.E.D.)

5

[a] $\because m(\widehat{B D})=2 \mathrm{~m}(\angle \mathrm{C})$
$\therefore m(\widehat{B D})=2 \times 26^{\circ}=52^{\circ}$
$\because m(\angle A)=\frac{1}{2}[m(\widehat{C H})-m(\widehat{B D})]$
$\therefore 40^{\circ}=\frac{1}{2}\left[\mathrm{~m}(\widehat{\mathrm{CH}})-52^{\circ}\right]$
$\therefore 80^{\circ}=\mathrm{m}(\widehat{\mathrm{CH}})-52^{\circ}$
$\therefore \mathrm{m}(\widehat{\mathrm{CH}})=80^{\circ}+52^{\circ}=132^{\circ}$
(First req.)
$\therefore \mathrm{m}(\angle \mathrm{HXC})=\frac{1}{2}[\mathrm{~m}(\widehat{\mathrm{CH}})+\mathrm{m}(\widehat{\mathrm{BD}})]$

$$
=\frac{1}{2}\left[132^{\circ}+52^{\circ}\right]=92^{\circ}
$$

(Second req.)
[b] $\because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to the circle
$\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore m(\angle A B C)=m(\angle A C B)=\frac{180^{\circ}-70^{\circ}}{2}=55^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BHC})$ (inscribed)
$=\mathrm{m}(\angle \mathrm{ABC})$ (tangency $)=55^{\circ}$
,$\because \mathrm{BCDH}$ is a cyclic quadrilateral.
$\therefore \mathrm{m}(\angle \mathrm{CBH})+\mathrm{m}(\angle \mathrm{CDH})=180^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CBH})=180^{\circ}-125^{\circ}=55^{\circ}$
In $\triangle \mathrm{BCH}: \therefore \mathrm{m}(\angle \mathrm{BHC})=\mathrm{m}(\angle \mathrm{CBH})$
$\therefore \mathrm{CB}=\mathrm{CH}$
(Q.E.D.)
27) Matrouh

1
$\begin{array}{llllllll}1 \mathrm{c} & 2 \mathrm{c} & 3 \mathrm{~d} & 4 \mathrm{~b} & 5 \mathrm{c} & 5 \mathrm{~b}\end{array}$
2
[a]

$\because \mathrm{x}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$
,$\because \mathrm{Y}$ is the midpoint of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
, $\because A B=A C$
$\therefore \mathrm{MX}=\mathrm{MY}$
$\therefore \triangle \mathrm{MXY}$ is an isoscles triangle.
(Q.E.D.)
[b] $\because \overrightarrow{\mathrm{AF}} / / \overline{\mathrm{DE}}, \overrightarrow{\mathrm{AB}}$ is a transversal.
$\therefore \mathrm{m}(\angle \mathrm{BAF})=\mathrm{m}(\angle \mathrm{AED})$ (alternate angles)
, $\because \mathrm{m}(\angle \mathrm{C})$ (inscribed)

$$
=\mathrm{m}(\angle \mathrm{BAF}) \text { (tangency) }
$$

From (1) and (2) : $\therefore \mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{AED})$
\therefore DEBC is a cyclic quadrilateral.
(Q.E.D.)

3

[a] $\because m(\angle \mathrm{D})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{M})$
(inscribed and central angles subtended by $\overparen{B C}$)
$\therefore m(\angle \mathrm{D})=\frac{1}{2} \times 100^{\circ}=50^{\circ}$
, $\because \angle A B D$ is an exterior angle of $\triangle B C D$
$\therefore \mathrm{m}(\angle \mathrm{ABD})=\mathrm{m}(\angle \mathrm{BDC})+\mathrm{m}(\angle \mathrm{DCB})$
$\therefore \mathrm{m}(\angle \mathrm{DCB})=120^{\circ}-50^{\circ}=70^{\circ} \quad$ (The req.)
[b] $\because \overrightarrow{\mathrm{CA}}$ and $\overrightarrow{\mathrm{CB}}$ are two tangents to the circle.
$\therefore \overline{\mathrm{MA}} \perp \overline{\mathrm{AC}}$
$\therefore \mathrm{m}(\angle \mathrm{MAC})=90^{\circ}$
, $\overline{\mathrm{MB}} \perp \overline{\mathrm{BC}}$
$\therefore \mathrm{m}(\angle \mathrm{MBC})=90^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{MAC})+\mathrm{m}(\angle \mathrm{MBC})=180^{\circ}$
$\therefore \mathrm{ACBM}$ is a cyclic quadrilateral.
, $\because \angle \mathrm{DMB}$ is an exterior angle of it
$\therefore m(\angle D M B)=m(\angle A C B)$
(Q.E.D.)
[a] $\because \overrightarrow{\mathrm{AD}}$ is a tangent to the circle.
$\therefore \mathrm{m}(\angle \mathrm{DAB})$ (tangency)
$=m(\angle A C B)$ (inscribed)
$, \because \overline{X Y} / / \overline{\mathrm{BC}}, \overline{\mathrm{YC}}$ is a transversal.
$\therefore \mathrm{m}(\angle \mathrm{AYX})=\mathrm{m}(\angle \mathrm{ACB})$ (corresponding angles)
From (1) and (2) : $\therefore \mathrm{m}(\angle \mathrm{DAB})=\mathrm{m}(\angle \mathrm{AYX})$
$\therefore \overrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the points A, X and Y
(Q.E.D.)
[b] $\because \overline{\mathrm{DE}} / / \overline{\mathrm{BC}}$
$\therefore \mathrm{m}(\widehat{\mathrm{DB}})=\mathrm{m}(\widehat{\mathrm{EC}})$ adding $\mathrm{m}(\widehat{\mathrm{BC}})$ to both sides
$\therefore \mathrm{m}(\widehat{\mathrm{DC}})=\mathrm{m}(\widehat{\mathrm{EB}})$
$\therefore \mathrm{m}(\angle \mathrm{DAC})=\mathrm{m}(\angle \mathrm{BAE})$
(Q.E.D.)

5

[a] Prove by yourself.
[b] $\because \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to the circle
$\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ACB})=\frac{180^{\circ}-70^{\circ}}{2}=55^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CEB})$ (inscribed)
$=m(\angle C B A)($ tangency $)=55^{\circ}$
, $\because \mathrm{BCDE}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{CBE})+\mathrm{m}(\angle \mathrm{CDE})=180^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{CBE})=180^{\circ}-125^{\circ}=55^{\circ}$
In $\triangle \mathrm{EBC}: \therefore \mathrm{m}(\angle \mathrm{CEB})=\mathrm{m}(\angle \mathrm{CBE})$
$\therefore \mathrm{CB}=\mathrm{CE}$
(Q.E.D.1)
, $\because \mathrm{m}(\angle \mathrm{ACB})=\mathrm{m}(\angle \mathrm{CBE})=55^{\circ}$
and they are alternate angles
$\therefore \overrightarrow{\mathrm{AC}} / / \overrightarrow{\mathrm{BE}}$
(Q.E.D.2)

Governorates' Examinations

Giza Governorate

Answer the following questions :

1 Choose the correct answer :

(1) The measure of the inscribed angle is \qquad the measure of the central angle, subtended by the same arc.
(a) half
(b) third
(c) quarter
(d) double
(a) It is possible to draw a circle passing through the vertices of a \qquad
(a) trapezium.
(b) parallelogram.
(c) rectangle.
(d) rhombus.
(3) The centre of the inscribed circle of any triangle is the point of intersection of its \qquad
(a) altitudes.
(b) medians.
(c) axes of symmetry of its sides.
(d) bisectors of its interior angles.
(4) If the two circles M and N are touching internally, the radius length of one of them $=3 \mathrm{~cm}$. and $\mathrm{MN}=8 \mathrm{~cm}$., then the radius length of the other circle $=$ \qquad cm .
(a) 12
(b) 11
(c) 6
(d) 5
(5) In the opposite figure :

If $\mathrm{E} \in \overrightarrow{\mathrm{BC}}, \overrightarrow{\mathrm{CX}}$ bisects $\angle \mathrm{DCE}$
, $\mathrm{m}(\angle \mathrm{XCE})=62^{\circ}$
, then $\mathrm{m}(\angle \mathrm{A})=$ \qquad

(a) 62°
(b) 118°
(c) 56°
(d) 124°
(6) In the opposite figure :

If C is the midpoint of $\widehat{\mathrm{AB}}$
, then AB
2 AC
(a) $<$
(b) $>$
(c) \geq
(d) $=$

(2] [a] In the opposite figure:

If E is the midpoint of $\overline{X Y}$
, $\mathrm{m}(\angle \mathrm{EMN})=130^{\circ}$
, then find : $m(\angle C)$

[b] In the opposite figure:
If $\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to the circle at B, C
, $\mathrm{m}(\angle \mathrm{D})=70^{\circ}, \mathrm{CB}=\mathrm{CD}$
(1) Find : $m(\angle A)$
(2) Prove that : $\overline{\mathrm{BD}} / / \overline{\mathrm{AC}}$

(3) [a] In the opposite figure :
$\overline{\mathrm{XB}} / / \overline{\mathrm{CY}}, \overline{\mathrm{MA}} \perp \overline{\mathrm{XC}}$
,$\overline{\mathrm{MD}} \perp \overline{\mathrm{BY}}$
Prove that : $\mathrm{MA}=\mathrm{MD}$

[b] In the opposite figure :
$\overline{\mathrm{CE}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{AD}} \perp \overline{\mathrm{BC}}$ and intersects the circle at X

Prove that :

(1) AEDC is a cyclic quadrilateral.
(2) $\overrightarrow{\mathrm{CB}}$ bisects $\angle \mathrm{ECX}$

4 [a] In the opposite figure :
If $m(\angle \mathrm{DEF})=115^{\circ}$
, then find : $\mathrm{m}(\angle \mathrm{DMF})$

[b] In the opposite figure :
Inscribed circle of the triangle ABC touches
its sides at X, Y and Z
If $\mathrm{AX}=3 \mathrm{~cm} ., \mathrm{XB}=4 \mathrm{~cm} ., \mathrm{AC}=8 \mathrm{~cm}$.
Find: The length of $\overline{\mathrm{BC}}$

(5in [a] the opposite figure:

$$
\begin{aligned}
& \overrightarrow{\mathrm{AB}} \cap \overrightarrow{\mathrm{CD}}=\{\mathrm{E}\}, \mathrm{m}(\angle \mathrm{C})=25^{\circ} \\
& , \mathrm{m}(\angle \mathrm{E})=40^{\circ}
\end{aligned}
$$

Find: m $(\angle \mathrm{ADC})$

[b] In the opposite figure :

$\overline{\mathrm{AB}}$ is a diameter in the circle M
,$\overleftrightarrow{\mathrm{CF}}$ is a tangent to the circle at C
, $\overrightarrow{\mathrm{DF}} \perp \overline{\mathrm{AB}}$ and intersects $\overline{\mathrm{BC}}$ at E

Prove that :

(1) ADEC is a cyclic quadrilateral.

(2) \triangle FCE is an isosceles triangle.

2 Alexandria Governorate

Answer the following questions :

1 Choose the correct answer from those given :

(1) The two opposite angles in the cyclic quadrilateral are
(a) equal.
(b) supplementary.
(c) complementary.
(d) alternate.
(2) The opposite figure represents a semicircle its centre is M and its radius length is r length unit, then the area of the opposite figure $=$ \qquad square units.

(a) $2 \pi r$
(b) πr
(c) $\pi \mathbf{r}^{2}$
(d) $\frac{\pi r^{2}}{2}$
(3) In a regular hexagon, the measure of the angle of its vertex equals \qquad
(a) 60°
(b) 108°
(c) 120°
(d) 135°
(4) If $\overline{\mathrm{AB}}$ is a line segment, then the number of circles can be drawn passing through A and B equals
(a) 1
(b) 2
(c) 3
(d) an infinite number.
(5) In the opposite figure :

The length of $\overline{\mathrm{AB}}=$ \qquad cm .
(a) $10 \sqrt{3}$
(b) 10
(c) 5
(d) $5 \sqrt{3}$

(6) The inscribed angle which is opposite to the minor arc in a circle is
(a) acute.
(b) right.
(c) obtuse.
(d) reflex.

2] $1 \mathrm{a} \mid$ In the opposite figure :

$\mathrm{AB}=\mathrm{AD}$
, $\mathrm{m}(\angle \mathrm{ABC})=20^{\circ}$
, $\mathrm{m}(\angle \mathrm{ADB})=70^{\circ}$
Find: $m(\angle C), m(\angle B D C)$

[b] In the opposite figure :

$\mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle \mathrm{BDC})=90^{\circ}$
, H is the midpoint of $\overline{\mathrm{BC}}$ and $\mathrm{m}(\angle \mathrm{AHD})=48^{\circ}$
(1) Prove that : ABCD is a cyclic quadrilateral.

(e) Find: m ($\angle \mathrm{ABD}$)

(3) [a] In the opposite figure:

A circle M of circumference 44 cm .
, $\overline{\mathrm{AB}}$ is a diameter, $\overline{\mathrm{BC}}$ is a tangent at B
and $\mathrm{m}(\angle \mathrm{ACB})=30^{\circ}$
Find: The length of $\overline{\mathrm{BC}}\left(\pi=\frac{22}{7}\right)$

[b] In the opposite figure :

If M is a circle, $\mathrm{m}(\angle \mathrm{A})=48^{\circ}$
Find: m ($\widehat{\text { BD }}$ the major)

(4) [a] In the opposite figure:
$\overline{\mathrm{AD}}$ is a diameter in a circle M , $\overrightarrow{\mathrm{CA}}$ and $\overrightarrow{\mathrm{CB}}$ are two tangents to the circle M , touch it at A and B respectively.
Prove that: $\mathrm{m}(\angle \mathrm{DMB})=\mathrm{m}(\angle \mathrm{ACB})$

[b] In the opposite figure :
ABC is a triangle in which $\mathrm{AB}=\mathrm{AC}$
, $\overline{\mathrm{BC}}$ is a chord in the circle M
, if $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ cut the circle at D and H respectively.
Prove that : $\mathrm{m}(\overparen{\mathrm{DB}})=\mathrm{m}(\overparen{\mathrm{HC}})$

5 [a] In the opposite figure:
M and N are two congruent circles
, $\mathrm{AB}=\mathrm{CD}$
Prove that : The figure MXYN is a rectangle.

Geometry

[b] ABCD is a quadrilateral inscribed in a circle, H is a point outside the circle and $\overrightarrow{\mathrm{HA}}$ and $\overrightarrow{\mathrm{HB}}$ are two tangents to the circle at A and B , if $\mathrm{m}(\angle \mathrm{AHB})=70^{\circ}$ and $\mathrm{m}(\angle \mathrm{ADC})=125^{\circ}$, prove that :
(1) $\mathrm{AB}=\mathrm{AC}$
(a) $\overleftrightarrow{A C}$ is a tangent to the circle passing through the points A, B and H

3 El-Kalyoubia Governorate

Answer the following questions:

1 Choose the correct answer :

(1) If the area of the circle is $9 \pi \mathrm{~cm}^{2}$, then its radius length $=$ \qquad cm .
(a) 9
(b) 2
(c) (-3)
(d) 3
(a) The number of symmetric axes of a square $=$ \qquad
(a) 1
(b) 2
(c) 3
(d) 4
(3) If M is a circle of a diameter length equals 14 cm ., $\mathrm{MA}=(2 x+3) \mathrm{cm}$. where A lies on the circle, then $X=$
(a) 5
(b) 3
(c) 2
(d) 1
(4) The raito between the measure of the inscribed angle and the measure of the central angle subtended by the same arc $=$ \qquad ..
(a) $1: 2$
(b) $2: 1$
(c) $1: 1$
(d) $1: 3$
(5) If ABCD is a cyclic quadrilateral and $\mathrm{m}(\angle \mathrm{B})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{D})$, then $\mathrm{m}(\angle \mathrm{B})=$
(a) 90°
(b) 60°
(c) 120°
(d) 180°
(6) If the figure $A B C D \sim$ the figure $X Y Z L$, then $m(\angle B)=m(\angle$
(a) X
(b) Y
(c) Z
(d) L
(2) [a] In the opposite figure:

Two concentric circles at M
, $\mathrm{m}(\angle \mathrm{ABE})=\mathrm{m}(\angle \mathrm{AEB})$
Prove that: $\mathrm{CD}=\mathrm{ZL}$

[b] In the opposite figure :

$\overrightarrow{\mathrm{AB}}$ is a tangent to the circle M
, $\mathrm{m}(\angle \mathrm{A})=40^{\circ}$
Find with proof : $\mathrm{m}(\angle \mathrm{BDC})$

(3) [a] Using your geometric tools, draw $\overline{\mathrm{AB}}$ with a length of 4 cm ., then draw a circle passing through the two points A and B whose radius length is 3 cm .
What are the possible solutions? (Don't remove the arcs)

[b] In the opposite figure :

$\overline{\mathrm{AB}}$ is a diameter in the circle M
, X is the midpoint of $\overrightarrow{\mathrm{AC}}$ and $\overrightarrow{\mathrm{XM}}$ intersecting the tangnet of the circle at B in Y

Prove that: The figure AXBY is a cyclic quadrilateral.

4) [a] In the opposite figure :

$\overrightarrow{X Y}$ and $\overrightarrow{X Z}$ are two tangents to the circle at the two points Y and $Z, m(\angle X)=40^{\circ}$
, $\mathrm{m}(\angle \mathrm{D})=110^{\circ}$
Prove that : $\mathrm{m}(\angle Z Y E)=\mathrm{m}(\angle Z E Y)$

[b] In the opposite figure :
$\mathrm{m}(\angle \mathrm{E})=40^{\circ}, \mathrm{m}(\angle \mathrm{C})=25^{\circ}$

Find with proof :

(1) $\mathrm{m}(\angle \mathrm{ADC})$
(a) $m(\widehat{A C})$

(5] [a] In the opposite figure:
$\overrightarrow{\mathrm{AD}}$ is the tangent to the circle M at A
, $m(\angle \mathrm{DAC})=130^{\circ}$
Find with proof: $m(\angle B)$
[b] ABCD is a quadrilateral drawn in a circle $, \mathrm{E} \in \overrightarrow{\mathrm{AB}}, \mathrm{E} \notin \overrightarrow{\mathrm{AB}}$
 $, m(\widehat{\mathrm{AB}})=110^{\circ}, m(\angle \mathrm{CBE})=85^{\circ}$
Find with proof: $\mathrm{m}(\angle \mathrm{BDC})$

El-Sharkia Governorate

Answer the following questions : (Calculator is allowed)

(1) Choose the correct answer from those given :

(1) The two tangents which are drawn from the two endpoints of a diameter of a circle are
(a) parallel.
(b) perpendicular.
(c) coincide.
(d) intersecting.
(2) The number of the axes of symmetry of the semicircle \qquad the number of the axes of symmetry of the isosceles triangle.
(a) $>$
(b) $<$
(c) $=$
(d) \geq
(3) In the opposite figure :
$\overline{\mathrm{AB}} / / \overline{\mathrm{CD}}, \mathrm{m}(\angle \mathrm{AWC})=40^{\circ}$, then $\mathrm{m}(\angle \mathrm{DEB})=$ \qquad
(a) 50°
(b) 40°
(c) 30°
(d) 45°

(4) A circle, its radius length $(2 X+6) \mathrm{cm}$. and the straight line L is at distance $(X+2) \mathrm{cm}$. from its centre where $x>0$, then L is
(a) outside the circle.
(b) a tangent to the circle.
(c) a secant to the circle.
(d) passing through the centre.
(5) If the straight line $\overleftrightarrow{\mathrm{AB}} \cap$ the circle $M=\{A, B\}$, then $\overleftrightarrow{\mathrm{AB}} \cap$ the surface of the circle $\mathrm{M}=$ \qquad
(a) $\{\mathrm{A}, \mathrm{B}\}$
(b) $\overline{\mathrm{AB}}$
(c) $\overrightarrow{\mathrm{AB}}$
(d) $\overrightarrow{\mathrm{BA}}$
(6) In the opposite figure :
$\mathrm{CD}=3 \mathrm{~cm} ., \overline{\mathrm{MC}} \perp \overline{\mathrm{AB}}$
, D is the midpoint of $\overline{\mathrm{MA}}$
then the area of the circle $M=$
$\pi \mathrm{cm}^{2}$.

(a) 3
(b) 6
(c) 9
(d) 36
(2) [a] In the opposite figure:
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords equal in length at the circle M
, X is the midpoint of $\overline{\mathrm{AB}}$
, Y is the midpoint of $\overline{\mathrm{AC}}, \mathrm{m}(\angle \mathrm{A})=70^{\circ}$
(1) Find : m (\angle DME)
(2) Prove that: $X D=Y E$

[b] In the opposite figure :

$\overline{\mathrm{AB}}$ is a diameter in the circle M
$, \overrightarrow{\mathrm{AB}} \cap \overrightarrow{\mathrm{CD}}=\{\mathrm{E}\}, \mathrm{m}(\angle \mathrm{E})=30^{\circ}, \mathrm{m}(\widehat{\mathrm{AC}})=80^{\circ}$
Find : $\mathrm{m}(\widehat{\mathrm{CD}})$

(3) [a] Complete: The measure of the inscribed angle equals \qquad the measure of the central angle \qquad by the same arc.
[b] In the opposite figure :
M is a circle, $\mathrm{m}(\angle \mathrm{MAB})=50^{\circ}$
Find : $m(\angle C)$

4 [a] In the opposite figure :
$m(\angle \mathrm{ABE})=100^{\circ}$
, $\mathrm{m}(\angle \mathrm{CAD})=40^{\circ}$
Prove that: \triangle DAC is an isosceles triangle.

[b] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent-segments to the circle at B and C

$$
, \mathrm{m}(\angle \mathrm{~A})=50^{\circ}, \mathrm{m}(\angle \mathrm{D})=115^{\circ}
$$

Prove that: (1) $\overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{ABE}$
(2) $\mathrm{CB}=\mathrm{CE}$

(5] [a] Complete: The measure of the inscribed angle in a semicircle equals \qquad .
[b] In the opposite figure :
ABC and DCE are two equilateral triangles
, E is the midpoint of $\overline{\mathrm{BC}}, \overrightarrow{\mathrm{AE}} \cap \overline{\mathrm{BD}}=\{\mathrm{W}\}$
(1) Prove that $: \overline{\mathrm{AC}}$ is a tangent-segment to the circle which passes through the vertices of \triangle CED
(a) Prove that: CDWE is a cyclic quadrilateral.
(3) Find : The centre of the circle which passes through the vertices of the quadrilateral CDWE

Geometry

5 El-Monofia Governorate

Answer the following questions : (Calculator is allowed)

1 Choose the correct answer :
(1) In the opposite figure :
$\mathrm{H} \in \overrightarrow{\mathrm{DA}}, \overrightarrow{\mathrm{AO}}$ bisects $\angle \mathrm{HAB}$
, $\mathrm{m}(\angle \mathrm{HAO})=55^{\circ}$
, then $\mathrm{m}(\angle \mathrm{C})=$

(a) 55°
(b) 75°
(c) 110°
(d) 125°
(a) In the opposite figure :

If the side length of the square $\mathrm{ABCD}=7 \mathrm{~cm}$.
and the side length of the square $X Y Z L=3 \mathrm{~cm}$.
, then the area of the shaded part $=$ cm^{2}.
(a) $(7-3)$
(b) $4(7-3)$
(c) $(7-3)^{2}$
(d) $\left(7^{2}-3^{2}\right)$

(3) If $\overleftrightarrow{\mathrm{AB}} \cap$ the circle $\mathrm{M}=\{\mathrm{A}, \mathrm{B}\}$, then $\overleftrightarrow{\mathrm{AB}} \cap$ the surface of the circle $\mathrm{M}=$
(a) $\overleftrightarrow{A B}$
(b) $\overline{\mathrm{AB}}$
(c) $\{A, B\}$
(d) $\overrightarrow{\mathrm{AB}}$
(4) In the opposite figure :

Two concentric circles with centre M , the radii lengths of them are 6 cm . and 3 cm . , if $\mathrm{m}(\overparen{\mathrm{AB}})=60^{\circ}$, then $\mathrm{m}(\overparen{\mathrm{DC}})=$

(a) 60°
(b) 30°
(c) 120°
(d) 40°
(5) If $\overline{\mathrm{MA}}$ and $\overline{\mathrm{MB}}$ are two perpendicular radii in a circle M and the area of triangle $\mathrm{AMB}=8 \mathrm{~cm}^{2}$, then the length of radius of this circle $=$ \qquad
(a) 8 cm .
(b) 16 cm .
(c) 4 cm .
(d) 2 cm .
(6) In the opposite figure :
$\mathrm{CA}=\mathrm{CB}, \overline{\mathrm{CX}} \perp \overline{\mathrm{AB}}$
, $\mathrm{AB}=2 \mathrm{CX}$

, then $m(\angle A)=$
(a) 30°
(b) 60°
(c) 90°
(d) 45°

(2) [a] In the opposite figure :

$A B C D$ is a quadrilateral inscribed in the circle M
$, \mathrm{M} \in \overline{\mathrm{AB}}, \mathrm{CB}=\mathrm{CD}$
, $m(\angle B C D)=120^{\circ}$
Find: $(1) \mathrm{m}(\angle \mathrm{A})$
(a) $\mathrm{m}(\angle \mathrm{D})$

[b] In the opposite figure :

If $\mathrm{m}(\widehat{\mathrm{HC}})=100^{\circ}, \mathrm{m}(\widehat{\mathrm{BD}})=30^{\circ}$
Find: $m(\angle \mathrm{~A})$

3 [a] In the opposite figure :
Two concentric circles at M
,$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangents to the smaller circle
, $\mathrm{m}(\angle \mathrm{A})=70^{\circ}$
(1) Find : m ($\angle \mathrm{DMH})$
(2) Prove that: $\mathrm{AB}=\mathrm{AC}$

[b] In the opposite figure :

Two intersecting circles at A and $\mathrm{B}, \mathrm{m}(\angle \mathrm{C})=70^{\circ}$
(1) Find : m ($\angle \cdot \mathrm{O}$)
(2) Prove that: $\overline{\mathrm{CD}} / / \overline{\mathrm{HO}}$

4 [a] $\overline{\mathrm{AB}}$ is a diameter in the circle $\mathrm{M}, \overline{\mathrm{AC}}$ is a chord such that $\mathrm{m}(\angle \mathrm{BAC})=30^{\circ}$, draw $\overline{\mathrm{BC}}$ and draw $\overline{\mathrm{MD}} \perp \overline{\mathrm{AC}}$ and cut it at D
(1) Prove that : $\overline{\mathrm{MD}} / / \overline{\mathrm{BC}}$
(a) Porve that : The length $\overline{\mathrm{BC}}=$ the length of the radius of this circle.
[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle M
$, m(\angle \mathrm{~B})=40^{\circ}, \overleftrightarrow{\mathrm{DH}}$ is a tangent at D
, $\stackrel{\mathrm{DH}}{\mathrm{D}} / / \overrightarrow{\mathrm{BC}}$
Find: $\mathrm{m}(\overparen{\mathrm{DC}})$

5 [a] If circle with radius length 5 cm ., A is a point in its plane where $M A=(2 x-3) \mathrm{cm}$. Find the value of X if A is located outside the circle.

[b] In the opposite figure :

$\overline{\mathrm{AB}}$ is a diameter of the circle M, H is a midpoint of a chord $\overline{\mathrm{AC}}$,$\overline{\mathrm{BD}}$ is a tangent to the circle at B
, $\overrightarrow{\mathrm{HM}}$ cuts the circle at X , porve that :
(1) MHDB is a cyclic quadrilateral.

(a) $\mathrm{m}(\angle \mathrm{BAX})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{D})$
(3) $\overleftrightarrow{A B}$ is a tangent to the circle passing through the points B, C and D

6
 El-Gharbia Governorate

Answer the following questions :

1 Choose the correct answer from those given :
(1) If the length of a diameter of a circle is 8 cm . and the straight line L at a distance of 4 cm . from its centre, then L is
(a) a secant to the circle at two points.
(b) lying outside the circle.
(c) a tangent to the circle.
(d) an axis of symmetry to the circle.
(2) In the opposite figure :

If M is the centre of the circle
, $\mathrm{m}(\angle \mathrm{BMD})=110^{\circ}$
, then $m(\angle C)=$ \qquad

(a) 70°
(b) 110°
(c) 125°
(d) 55°

(a) 120°
(b) 110°
(c) 90°
(d) 30°
(4) The centre of the inscribed circle of any triangle is the intersection point
(a) its medians.
(b) its heights.
(c) the symmetric axes of its sides.
(d) bisectors of its interior angles.
(5) In the opposite figure :

$$
\mathrm{m}(\widehat{\mathrm{AC}})=50^{\circ}, \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}
$$

, then the value of $y=$
(a) 5°
(b) 10°
(c) 15°
(d) 20°

(6) In the opposite figure :
$\mathrm{MX}=\mathrm{MY}, \mathrm{m}(\angle \mathrm{B})=50^{\circ}$
, then $m(\angle A)=$ \qquad
(a) 50°
(b) 60°
(c) 70°
(d) 80°

2 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ is a chord in the circle M
$, \overline{\mathrm{CM}} / / \overline{\mathrm{AB}}, \overline{\mathrm{BC}} \cap \overline{\mathrm{AM}}=\{\mathrm{E}\}$
Prove that : $\mathrm{BE}>\mathrm{AE}$

[b] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{BC}}$ are two chords in the circle M , its radius of length $5 \mathrm{~cm} ., \overrightarrow{\mathrm{MD}} \perp \overline{\mathrm{AB}}$ and cuts $\overline{\mathrm{AB}}$
at D and cuts the circle at E, X is midpoint of $\overline{B C}$
, $\mathrm{AB}=8 \mathrm{~cm}$. and $\mathrm{m}(\angle \mathrm{ABC})=56^{\circ}$
Find : (1) m ($\angle \mathrm{DMX}$)
(2) The length of $\overline{\mathrm{DE}}$

(3) [a] In the opposite figure :
$\mathrm{m}(\angle \mathrm{ABE})=100^{\circ}$
, $\mathrm{m}(\angle \mathrm{CAD})=40^{\circ}$
Prove that: $\mathrm{m}(\widehat{\mathrm{CD}})=\mathrm{m}(\widehat{\mathrm{AD}})$

[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a chord in the circle M
, $\overrightarrow{\mathrm{AC}}$ bisects $\angle \mathrm{BAM}$ and cuts the circle M at C
, D is midpoint of $\overline{\mathrm{AB}}$
Prove that : $\overline{\mathrm{DM}} \perp \overline{\mathrm{CM}}$

4 [a] In the opposite figure :
$\overrightarrow{\mathrm{CB}} \cap \overrightarrow{\mathrm{ED}}=\{\mathrm{A}\}, \mathrm{m}(\angle \mathrm{A})=40^{\circ}$
, $\overline{\mathrm{DC}} \cap \overline{\mathrm{BE}}=\{\mathrm{X}\}, \mathrm{m}(\angle \mathrm{BCD})=26^{\circ}$
Find: (1) $\mathrm{m}(\mathrm{CE})$
(2) $\mathrm{m}(\angle \mathrm{EXC})$

Geometry

[b] In the opposite figure :

$\overrightarrow{X Y}$ and $\overrightarrow{X Z}$ are two tangents to the circle from the point $X, m(\angle X)=40^{\circ}$
, $\mathrm{m}(\angle \mathrm{D})=110^{\circ}$
Prove that : $\mathrm{m}(\overparen{\mathrm{ZDE}})=\mathrm{m}(\overparen{\mathrm{ZY}})$

(5) [a] In the opposite figure:

ABC is a triangle drawn in a circle
$, \overline{\mathrm{BX}} \perp \overline{\mathrm{AC}}, \overrightarrow{\mathrm{AY}} \perp \overline{\mathrm{BC}}$ cuts it at Y and cuts the circle at Z

Prove that :

(1) ABYX is a cyclic quadrilateral.
(a) $\overrightarrow{\mathrm{BC}}$ bisects $\angle \mathrm{XBZ}$

[b] In the opposite figure :
ABC is a right-angled triangle at A
, $\mathrm{AC}=3 \mathrm{~cm}$., $\mathrm{BC}=6 \mathrm{~cm}$.
, $\mathrm{m}(\angle \mathrm{BAD})=60^{\circ}$

Prove that :

$\overrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the vertices of the triangle ABC

7 El-Dakahlia Governorate

Answer the following questions: (Calculator is allowed)
[1] [a] Choose the correct answer from the given answers :
(1) M and N are two circles of radii lengths 9 cm . 4 cm ., $\mathrm{MN}=5 \mathrm{~cm}$.
, then the two circles are \qquad
(a) intersecting.
(b) touching internally.
(c) touching externally.
(d) distant.
(2) The centres of all circles passing through the points A and B lie on \qquad
(a) $\overline{\mathrm{AB}}$
(b) midpoint of $\overline{\mathrm{AB}}$
(c) the symmetry axis of $\overline{\mathrm{AB}}$
(d) the perpendicular to $\overline{\mathrm{AB}}$ from B
(3) The measure of the inscribed angle which is drawn in a semicircle equals
(a) 180°
(b) 90°
(c) 45°
(d) 100°

[b] In the opposite figure :

$\overline{\mathrm{AB}}$ is a diameter in the circle M
$, \mathrm{m}(\angle \mathrm{D})=30^{\circ}, \mathrm{m}(\angle \mathrm{ACE})=50^{\circ}$
Find by proof : m ($\angle \mathrm{CBA}$)

[2] [a] Choose the correct answer from the given answers :
(1) In the opposite figure:
$\overline{\mathrm{CB}}$ and $\overline{\mathrm{CD}}$ are two tangent-segments at B and D , $\mathrm{m}(\angle \mathrm{C})=70^{\circ}$, then $\mathrm{m}(\widehat{\mathrm{DB}}$ the minor $)=$

(a) 180°
(b) 90°
(c) 100°
(d) 110°
(2) $\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ are two equal chords in length in the circle M, X and Y are the two midpoints of $\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ respectively, $\mathrm{MX}=3 \mathrm{~cm}$, , then $\mathrm{MY}=$ \qquad
(a) 3
(b) 6
(c) $\frac{3}{2}$
(d) 4
(3) The length of the arc which represents $\frac{1}{4}$ of the circle equals \qquad
(a) $4 \pi r$
(b) $2 \pi r$
(c) πr
(d) $\frac{1}{2} \pi r$

[b] In the opposite figure :

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent-segments to the circle M at B and C
, $\overline{\mathrm{AB}} / / \overline{\mathrm{CD}}, \mathrm{m}(\angle \mathrm{BMD})=130^{\circ}$
(1) Prove that : $\overrightarrow{\mathrm{CB}}$ bisects $\angle \mathrm{ACD}$
(2) Find by proof : m ($\angle \mathrm{A})$

3] [a] Using the geometric tools, draw $\overline{\mathrm{AB}}$ with length 6 cm ., then draw $\overrightarrow{\mathrm{AC}}$ where $\mathrm{m}(\angle \mathrm{CAB})=60^{\circ}$, draw the circle that passes through the points A, B and its centre lics on $\overrightarrow{\mathrm{AC}}$ and calculate the length of its radius (Don't rcomve the arcs).
[b] In the opposite figure :
M and N are two intersecting circles at B and C
, $A \in \overleftrightarrow{M N}$
Prove that: $\mathrm{BD}=\mathrm{CE}$

4) [a] In the opposite figure:
$\overline{\mathrm{OB}}$ is a tangent-segment to the circle M at B , $\overline{\mathrm{AB}}$ is a diameter, D is the midpoint of $\overline{\mathrm{AC}}$

Prove that:

(1) DOBM is a cyclic quadrilateral.

(2) $\mathrm{m}(\angle \mathrm{AOB})=2 \mathrm{~m}(\angle \mathrm{BAE})$

[b] In the opposite figure :

$\overline{\mathrm{XY}}$ is a diameter in the circle
, $\overline{\mathrm{EO}}$ is a chord in it, where $\overline{\mathrm{XY}} / / \overline{\mathrm{EO}}$
, $\mathrm{m}(\angle \mathrm{D})=70^{\circ}$
Find: $\mathrm{m}(\overparen{\mathrm{EX}})$

[5] [a] In the opposite figure :
$\mathrm{AE}=\mathrm{AC}, \overrightarrow{\mathrm{AD}}$ bisects $\angle \mathrm{BAC}$
Prove that : EBDO is a cyclic quadrilateral.
[b] $\overline{\mathrm{AB}}$ is a diameter in a circle, $\overline{\mathrm{AC}}$ is a chord in it, $\mathrm{m}(\angle \mathrm{CAB})=30^{\circ}$
 , draw $\overrightarrow{\mathrm{AC}}$ to cut the tangent to the circle at B at D .
Prove that : $\overrightarrow{\mathrm{BA}}$ touches the circle passing through the vertices of the triangle $B C D$

Ismailia Governorate

Answer the following questions: (Calculator is allowed)

11 Choose the correct answer from those given :
(1) A circle its radius length is 5 cm ., then its circumference $=$ \qquad
(a) 5π
(b) 7π
(c) 10π
(d) 25π
(a) We can draw a circle passes through the vertices of \qquad
(a) rectangle.
(b) rhombus.
(c) trapezium.
(d) parallclogram.
(3) The number of axes of symmetry of the circle $=$ \qquad
(a) one axis.
(b) two axes.
(c) three axes.
(d) an infinite number of axes.
(4) M is a circle with radius length $r, \overleftrightarrow{M A} \perp$ straight line L where $\overleftrightarrow{M A} \cap L=\{A\}$ If $M A>r$, then L is \qquad
(a) a tangent to the circle.
(b) a diameter in the circle.
(c) outside the circle.
(d) a secant to the circle.
(5) In the opposite figure :

Two concentric circles.
If the lengths of their radii are 2 cm . and 5 cm . , then $\frac{m(\overparen{A B})}{m(\overparen{C D})}=$
(a) $\frac{2}{5}$
(b) 1
(c) $\frac{2}{3}$
(d) $\frac{3}{5}$

(6) The sum of measures of the interior angles of the quadrilateral $=$
(a) 90°
(b) 180°
(c) 270°
(d) 360°
(2) [a] In the opposite figure :

ABCD is a cyclic quadrilateral in which $\mathrm{m}(\angle \mathrm{A})=120^{\circ}, \overrightarrow{\mathrm{BE}}$ bisects $\angle \mathrm{HBC}$
, $m(\angle \mathrm{EBC})=65^{\circ}$

Find with proof : (1) $m(\angle C)$
(2) $\mathrm{m}(\angle \mathrm{D})$
[b] In the opposite figure :
M is a circle, $\mathrm{AM}=\mathrm{AC}=\mathrm{BC}$
Prove that:
$\overleftrightarrow{\mathrm{AB}}$ is a tangent to the circle at A

(3) [a] In opposite figure :

X is the midpoint of $\overline{\mathrm{AB}}, \overline{\mathrm{MN}} \cap \overline{\mathrm{EC}}=\{\mathrm{Y}\}$
(1) Prove that : CXMY is a cyclic quadrilateral.
(2) Find : The centre of the circle which passes through the vertices of the figure CXMY

[b] In the opposite figure :

$\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to a circle
,$\overline{\mathrm{ED}}$ is a tangent to the circle at H such that $\mathrm{AE}=10 \mathrm{~cm}$.
, $\mathrm{EH}=3 \mathrm{~cm} ., \mathrm{AD}=9 \mathrm{~cm}$.
Find : The length of $\overline{E D}$

4 [a] In the opposite figure:
$\overline{\mathrm{ME}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MH}} \perp \overline{\mathrm{CD}}$
, $\mathrm{EX}=\mathrm{YH}$
Prove that : $\mathrm{AB}=\mathrm{CD}$

[b] Using geometric tools. Draw $\overline{\mathrm{AB}}$ its length is 6 cm ., then draw a circle passing through the two points A, B and its radius length is 3 cm .
How many circles can be drawn?

(5) [a] In the opposite figure :

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent-segments drawn from A , $\mathrm{m}(\angle \mathrm{AMB})=70^{\circ}$
Find: (1) $\mathrm{m}(\angle \mathrm{ABC})$
(a) $\mathrm{m}(\angle \mathrm{ACD})$

[b] $\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ are two equal chords in length in a circle
, $\overline{\mathrm{AB}} \cap \overline{\mathrm{CD}}=\{\mathrm{E}\}, \mathrm{m}(\widehat{\mathrm{AD}})=50^{\circ}$
(1) Prove that : $\mathrm{m}(\widehat{\mathrm{AD}})=\mathrm{m}(\overparen{\mathrm{BC}})$
(a) Find : m ($\angle \mathrm{AED}$)

9 Suez Governorate

Answer the following questions: (Calculator is allowed)

1) Choose the correct answer from those given :
(1) In the opposite figure :
$\overrightarrow{\mathrm{AB}}$ is a tangent to the circle M
, $\mathrm{MB}=6 \mathrm{~cm}$., $\mathrm{AB}=8 \mathrm{~cm}$.
, then $\mathrm{AM}=$ cm .

(a) 5
(b) 10
(c) 12
(d) 13
(a) If the two circles M and N are touching externally, the radius length of one of them is 5 cm ., and $\mathrm{MN}=9 \mathrm{~cm}$., then the radius length of the other circle equals cm .
(a) 4
(b) 5
(c) 9
(d) 14
(3) In the opposite figure :

If $\mathrm{m}(\overparen{\mathrm{AC}})=50^{\circ}, \mathrm{m}(\overparen{\mathrm{BD}})=110^{\circ}$
, then $m(\angle E)=$ \qquad .${ }^{\circ}$
(a) 60
(b) 50
(c) 40
(d) 30

(4) A circle can be drawn passing the vertices of a
(a) rhombus.
(b) rectangle.
(c) trapezoid.
(d) parallelogram.
(5) In the opposite figure :

ABCD is a cyclic quadrilateral $, \mathrm{m}(\angle \mathrm{D})=X^{\circ},(\angle \mathrm{B})=2 X^{\circ}$, then $X=$
(a) 120°
(b) 100°
(c) 60°
(d) 50°

(6) In the opposite figure :

In a circle $\mathrm{M}, \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}$
, $\mathrm{m}(\angle \mathrm{BMD})=80^{\circ}$
, then $\mathrm{m}(\widehat{\mathrm{AC}})=$
(a) 20°
(b) 40°
(c) 80°
(d) 160°
[2] [a] In the opposite figure:
ABC is an equilateral triangle drawn inside a circle M
Find: (1) $m(\angle B A C)$
(2) $\mathrm{m}(\angle \mathrm{BMC})$
[b] In the opposite figure :
$\overline{\mathrm{AD}}$ is a diameter of the circle M
, $\overrightarrow{\mathrm{AB}}$ is a tangent touches it at A
, $\mathrm{m}(\angle \mathrm{ABC})=50^{\circ}$
, E is the midpoint of $\overline{D C}$
Find with proof : m ($\angle \mathrm{AME}$)

(3) [a] In the opposite figure :
$m(\angle \mathrm{ABE})=100^{\circ}$
, $\mathrm{m}(\angle \mathrm{CAD})=40^{\circ}$
Prove that: ADC is an isosceles triangle.

[b] In the opposite figure :
$\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to the circle at B, C
, $\mathrm{m}(\angle \mathrm{D})=70^{\circ}$
Find: (1) $m(\angle A B C)$
(2) $\mathrm{m}(\angle \mathrm{A})$

(4) fal In the opposite figure:

M is a circle with radius length 7 cm .

$$
, \mathrm{m}(\angle \mathrm{AMB})=120^{\circ}
$$

Find: The length of $\widehat{\mathrm{AB}})\left(\pi=\frac{22}{7}\right)$

[b] In the opposite figure :

$\mathrm{m}(\angle \mathrm{BDC})=90^{\circ}, \mathrm{m}(\angle \mathrm{ACB})=30^{\circ}$
, $m(\angle \mathrm{ABC})=60^{\circ}$

Prove that:

The points A, B, C and D have one circle passing through them.

5] [a] In the opposite figure :
Triangle $A B C$ is inscribed in the circle M, in which $m(\angle \mathrm{~B})=\mathrm{m}(\angle \mathrm{C}), \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}}$
, $\overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}$
Prove that : MD = ME

[b] In the opposite figure :

$\overline{\mathrm{AB}}$ is a diameter of the circle M
, $\mathrm{m}(\angle \mathrm{C})=50^{\circ}$
Find with proof : m ($\angle \mathrm{CAE})$

10 Port Said Governorate

Answer the following questions:

1) Choose the correct answer from those given :
(1) In the opposite figure :

If $\mathrm{m}(\angle \mathrm{CBD})=50^{\circ}$
, then $\mathrm{m}(\angle \mathrm{AMD})=$
(a) 40°
(b) 50°
(c) 80°
(d) 100°

(2) A circle with diameter length $(2 x+5) \mathrm{cm}$., the straight line L is distant from its centre by $(x+2) \mathrm{cm}$. where $x>0$, then the straight line is \qquad
(a) a secant to the circle at two points.
(b) lying outside the circle.
(c) a tangent to the circle.
(d) an axis of symmetry to the circle.
(3) In the opposite figure :

If $\overline{\mathrm{AB}}$ is a diameter in circle
, $\mathrm{m}(\widehat{\mathrm{AC}})=\mathrm{m}(\widehat{\mathrm{CD}})=\mathrm{m}(\widehat{\mathrm{DE}})=\mathrm{m}(\overparen{\mathrm{EF}})=\mathrm{m}(\widehat{\mathrm{FB}})$
, then $\mathrm{m}(\angle \mathrm{DXE})=$ \qquad
(a) 72°
(b) 54°
(c) 36°
(d) 18°

(4) M and N are two intersecting circles their radii lengths are $5 \mathrm{~cm} ., 2 \mathrm{~cm}$, then $\mathrm{MN} \in$
(a) $[3,7[$
(b) $] 3,7[$
(c) $] 3,7]$
(d) $[3,7]$
(5) In the opposite figure :

If $\mathrm{m}(\angle \mathrm{BAD})=120^{\circ}$
, then $\mathrm{m}(\angle \mathrm{CBD})=$ \qquad
(a) 15°
(b) 30°
(c) 45°
(d) 60°

(6) The number of all common tangents drawn to two distant circles equals \qquad
(a) 4
(b) 3
(c) 2
(d) 1

2 [a] Using the given data in the opposite figure :
(1) Prove that : $\overline{\mathrm{DE}} / / \overline{\mathrm{CB}}$
(2) Find: DE

[b] In the opposite figure :
$\mathrm{m}(\angle \mathrm{A})=40^{\circ}, \mathrm{m}(\overparen{\mathrm{BD}})=60^{\circ}$
and $\mathrm{m}(\overparen{\mathrm{BC}})=\mathrm{m}(\overparen{\mathrm{DE}})$

Find with proof :

$\mathrm{m}(\widehat{\mathrm{EC}})$ and $\mathrm{m}(\widehat{\mathrm{BC}})$

3 [a] Using the given data in the opposite figure :

Prove that :

$A B C D$ is a cyclic quadrilateral.

[b] ABCD a parallelogram in which $\mathrm{AC}=\mathrm{BC}$
Prove that : $\stackrel{\mathrm{CD}}{ }$ is a tangent to the circumcircle of the triangle ABC
(4) [a] In the opposite figure :
$\overline{\mathrm{AB}}$ is a chord in the circle M
$, \overline{\mathrm{CM}} / / \overline{\mathrm{AB}}, \overline{\mathrm{BC}} \cap \overline{\mathrm{AM}}=\{\mathrm{E}\}$
Prove that : $\mathrm{BE}>\mathrm{AE}$,

[b] In the opposite figure :
$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ are two tangents to the circle M 1ouch it at B and C respectively and $\mathrm{m}(\angle \mathrm{BAM})=25^{\circ}$
(1) Prove that: $\overrightarrow{\mathrm{MA}}$ bisects ($\angle \mathrm{BMC}$)
(2) Find : $\mathrm{m}(\angle \mathrm{BMC})$.

(5) [a] In the opposite figure :

The two circles M and N intersect at A and B
, $\overline{\mathrm{CD}}$ is a chord in the circle M cuts $\overleftrightarrow{\mathrm{MN}}$ at E , if E is the midpoint of $\overline{C D}$
Prove that : $\overline{\mathrm{AB}} / / \overline{\mathrm{CD}}$

[b] ABCD is a square, $\overrightarrow{\mathrm{AX}}$ bisects $\angle \mathrm{BAC}$ and intersects $\overrightarrow{\mathrm{BD}}$ at X and $\overrightarrow{\mathrm{DY}}$ bisects $\angle \mathrm{CDB}$ and intersects $\overline{\mathrm{AC}}$ at Y

Prove that : AXYD is a cyclic quadrilateral.
11
Damietta Governorate

Answer the following questions: (Calculator is allowed)

1 Choose the correct answer from the given ones:

(1) ABC is a triangle having one symmetric line and its side lengths are 10 , 5 and $x \mathrm{~cm}$., then $\chi=$ \qquad cm .
(a) 5
(b) 8
(c) 10
(d) 12
(a) If the two circles M, N are touching internally, the length of one radius of them is $3 \mathrm{~cm} ., \mathrm{MN}=8 \mathrm{~cm}$., then the length of the radius of the other circle is \qquad cm .
(a) 5
(b) 11
(c) 6
(d) 12
(3) If the ratio between the measures of the angles of a triangle is $2: 3: 4$, then the measure of the greatest angle is \qquad
(a) 40°
(b) 90°
(c) 45°
(d) 80°
(4) In the opposite figure :

M is a circle, $\mathrm{m}(\angle \mathrm{MBC})=32^{\circ}$, then $\mathrm{m}(\widehat{\mathrm{BC}}$ the minor $)=$ \qquad
(a) 116°
(b) 23°
(c) 58°
(d) 64°

(5) A rectangular picture its length is 60 cm . and its width is 40 cm . We need to make a wooden frame its width is 5 cm ., then its total area is \qquad cm^{2}.
(a) 3050
(b) 3500
(c) 2925
(d) 3250
(B) In the opposite figure : $\mathrm{m}(\angle \mathrm{A})=X^{\circ}, \mathrm{m}(\angle \mathrm{C})=2 X^{\circ}$, then $x=$ \qquad
(a) 60°
(b) 50°
(c) 80°
(d) 20°

(2) [a] A, B are two points where $\mathrm{AB}=6 \mathrm{~cm}$., draw a circle of radius length 5 cm . and passes through the two points A, B

Find: (1) The number of circles can be drawn.
(2) The distance from the centre to $\overline{\mathrm{AB}}$ by proof.

[b] In the opposite figure :

M, N are two intersecting circles at $\mathrm{A}, \mathrm{B}, \stackrel{\mathrm{MN}}{\cap} \overline{\mathrm{AB}}=\{\mathrm{Y}\}$, $\mathrm{AB}=\mathrm{AC}$, if X is the midpoint of $\overline{\mathrm{AC}}$

Prove that : NX $=N Y$

(3) $[$ a] $\overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two chords in a circle

If X and Y are the two midpoints of $\overparen{A B}, \overparen{A C}$ respectively, $\overline{X Y}$ cuts $\overline{A B}$ at $\mathrm{D}, \overline{\mathrm{AC}}$ at H

Prove that : $\mathrm{AD}=\mathrm{AH}$

[b] In the opposite figure:

$\overline{\mathrm{AD}} / / \overline{\mathrm{BC}}, \mathrm{m}(\angle \mathrm{B})=74^{\circ}, \mathrm{m}(\angle \mathrm{DCF})=53^{\circ}$, $\overrightarrow{\mathrm{CF}}$ bisects $\angle \mathrm{DCE}$
Prove that : ABCD is a cyclic quadrilateral.

4 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent-segments to the circle M , $\overline{\mathrm{AB}} / / \overline{\mathrm{CD}}, \mathrm{m}(\angle \mathrm{BMD})=130^{\circ}$
Prove that : $\overrightarrow{\mathrm{CB}}$ bisects $\angle \mathrm{ACD}$

[b] In the opposite figure :
$\mathrm{m}(\angle \mathrm{BAC})=90^{\circ}, \mathrm{m}(\angle \mathrm{DAB})=60^{\circ}$
$A C=3 \mathrm{~cm} ., B C=6 \mathrm{~cm}$.

Prove that:

$\overrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the vertices of the triangle ABC
5 [a] In the opposite figure:
$\overline{\mathrm{AD}}$ and $\overline{\mathrm{BE}}$ are two equal chords in length in the circle , $\overrightarrow{\mathrm{AD}} \cap \overrightarrow{\mathrm{BE}}=\{\mathrm{C}\}$
Prove that: $\mathrm{CD}=\mathrm{CE}$

[b] In the opposite figure :

Two intersecting circles at A and B ,$\overline{\mathrm{CD}}$ passes through the point B and intersects the two circles at C and D
Prove that : AFXE is a cyclic quadrilateral.

Kafr El-Sheikh Governorate

Answer the following questions : (Calculator is allowed)

1] [a] Choose the correct answer from those given :
(1) In the opposite figure :

If $\mathrm{m}(\widehat{\mathrm{AC}})=30^{\circ}, \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}$
, then $\mathrm{m}(\angle \mathrm{BED})=$
(a) 10°
(b) 15°
(c) 30°
(d) 60°

(a) The two tangents drawn from the two ends of a diameter of a circle are \qquad
(a) parallel.
(b) equal in length.
(c) congruent.
(d) intersecting.
(3) M and N are two intersecting circles their radii lengths are $5 \mathrm{~cm} ., 2 \mathrm{~cm}$. , then $M N \in$ \qquad ..
(a) $] 3,7[$
(b) $[3,7[$
(c) $] 3,7]$
(d) $[3,7]$
[b] In the opposite figure :
$\overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two chords in the circle M ,
D, E are the two midpoints of $\overline{\mathrm{AB}}, \stackrel{\rightharpoonup}{\mathrm{AC}}$ respectively and $\mathrm{m}(\angle \mathrm{BAC})=65^{\circ}$

Find : m ($\angle \mathrm{DME}$)

2] [a] Choose the correct answer from those given :
(1) In the opposite figure :
$\overrightarrow{\mathrm{AB}}$ is a tangent to the circle M , if $\mathrm{MB}=5 \mathrm{~cm}$., $\mathrm{AC}=8 \mathrm{~cm}$., then $\mathrm{AB}=$ \qquad cm .
(a) 5
(b) 10
(c) 12
(d) 13
(a) The centre of the circumcircle of any triangle is the point of intersection of
(a) the interior bisectors of its angles.
(b) the exterior bisectors of its angles.
(c) its heights.
(d) the symmetric axes of its sides.
(3) The measure of the arc which represents $\frac{1}{3}$ the measure of the circle equals
(a) 60°
(b) 90°
(c) 120°
(d) 240°

[b] In the opposite figure :

M and N are two intersecting circles at A and B
$, C \in \overrightarrow{B A}, D \in$ the circle N
, $\mathrm{m}(\angle \mathrm{MND})=125^{\circ}$ and $\mathrm{m}(\angle \mathrm{BCD})=55^{\circ}$
Prove that : $\overrightarrow{\mathrm{CD}}$ is a tangent to the circle N at D

(3) [a] State three cases of the cyclic quadrilateral.
[b] ABCD is a quadrilateral in which $\mathrm{AB}=\mathrm{AD}, \mathrm{m}(\angle \mathrm{ABD})=30^{\circ}$ and $\mathrm{m}(\angle \mathrm{C})=60^{\circ}$ Prove that: ABCD is a cyclic quadrilateral.
4. [a] Prove that : The two tangent-segments drawn to a circle from a point outside it are equal in length.
[b] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent-segments to the circle M
, $\overline{\mathrm{AB}} / / \overline{\mathrm{CD}}, \mathrm{m}(\angle \mathrm{BMD})=130^{\circ}$
(1) Prove that : $\overrightarrow{\mathrm{CB}}$ bisects $\angle \mathrm{ACD}$
(a) Find: $m(\angle A)$ with proof.

[5] [a] In the opposite figure :
$\overline{\mathrm{AB}} \cap \overline{\mathrm{CD}}=\{\mathrm{E}\}, \mathrm{EA}=\mathrm{ED}$
Prove that : $\mathrm{EB}=\mathrm{EC}$

[b] In the opposite figure:

$\overline{\mathrm{AB}}$ is a diameter of a circle $\mathrm{M}, \mathrm{C} \in$ the circle
$, m(\angle \mathrm{CAB})=30^{\circ}, \mathrm{D}$ is the midpoint of $\widehat{\mathrm{AC}}, \overline{\mathrm{DB}} \cap \overline{\mathrm{AC}}=\{\mathrm{E}\}$
(1) Find $: m(\angle \mathrm{BDC}), \mathrm{m}(\angle \mathrm{ABD})$ with proof.
(a) Prove that: $\triangle \mathrm{ABE}$ is an isosceles triangle.

13 El-Beheira Governorate

Answer the following questions: (Calculators are permitted)
1 Choose the correct answer from those given:
(1) The distance between the two points $(6,0),(-4,0)$ equals \qquad length units.
(a) -10
(b) 10
(c) 2
(d) 24
(2) If the length of a diameter of a circle is 7 cm ., and the straight line Lat a distance of 3.5 cm . from its centre, then L is \qquad
(a) a secant to the circle at two points.
(b) lying outside the circle.
(c) a tangent to the circle.
(d) an axis of symmetry to the circle.
(3) If $\overline{\mathrm{AB}}$ is a diameter of a circle, where $\mathrm{A}(3,-5), \mathrm{B}(5,1)$, then the centre of the circle is \qquad
(a) $(4,-2)$
(b) $(4,2)$
(c) $(2,2)$
(d) $(8,-2)$
(4) The inscribed angle which is opposite to the minor arc in a circle is \qquad
(a) reflex.
(b) right.
(c) obtuse.
(d) acute.
(5) It is possible to draw a circle passing through the vertices of a \qquad
(a) trapezium.
(b) rhombus.
(c) parallelogram.
(d) rectangle.
(6) The number of tangents can be drawn from a point lies on a circle equals
(a) one.
(b) two.
(c) four.
(d) infinite number.

[2] [a] In the opposite figure :

$A B C$ is a triangle drawn inside a circle of centre M
$, \overline{\mathrm{MD}} \perp \overline{\mathrm{AC}}, \overline{\mathrm{ME}} \perp \overline{\mathrm{AB}}$
, $\mathrm{BC}=8 \mathrm{~cm}$.
(1) Prove that: $\overline{\mathrm{DE}} / / \overline{\mathrm{CB}}$
(2) Find: DE

[b] In the opposite figure :
ABC is a triangle drawn inside a circle,,$\overline{\mathrm{BX}} \perp \overline{\mathrm{AC}}$
$\overrightarrow{\mathrm{AY}} \perp \overline{\mathrm{BC}}$ cuts it at Y and cuts the circle at Z
Prove that :
(1) ABYX is a cyclie quadrilateral.
(a) $\overline{\mathrm{BC}}$ bisects $\angle \mathrm{XBZ}$

(3) [a] In the opposite figure:

Two concentric circles of centre M
, $\overrightarrow{\mathrm{EC}}$ is a tangent to the greater circle
, $\overline{\mathrm{EB}}$ cuts the smaller circle at A, B
, D is the midpoint of $\overline{\mathrm{AB}}$ and $\mathrm{m}(\angle \mathrm{CED})=40^{\circ}$

Find with proof : m ($\angle \mathrm{DMC}$)
[b] $\overline{\mathrm{AB}}, \overline{\mathrm{CD}}$ are two parallel chords in a circle M, E is the midpoint of $\overline{\mathrm{AB}}$, $\widehat{\mathrm{EM}}$ is drawn to cut $\overrightarrow{\mathrm{CD}}$ at F Prove that : $\mathrm{FC}=\mathrm{FD}$

4 [a] In the opposite figure :
$\overrightarrow{\mathrm{MC}} \cap \overline{\mathrm{AB}}=\{\mathrm{C}\}, \overrightarrow{\mathrm{MC}} \perp \overline{\mathrm{AB}}$
, $\overrightarrow{\mathrm{MC}}$ intersects the circle at D
, $\mathrm{m}(\angle \mathrm{MAB})=20^{\circ}$
Find: $(1) \mathrm{m}(\widehat{\mathrm{AD}})$
(a) $\mathrm{m}(\angle \mathrm{DEB})$

[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter of a circle M
,$\overleftrightarrow{\mathrm{CF}}$ is a tangent of the circle at C and $\overrightarrow{\mathrm{DE}} \perp \overrightarrow{\mathrm{AB}}$
Prove that: (1) ADEC is a cyclic quadrilateral.
(a) $\mathrm{FE}=\mathrm{FC}$

5] [a] Find the measure of the arc which represents $\frac{1}{3}$ its circle, then calculate the length of this arc if the length of the radius is $7 \mathrm{~cm} .\left(\pi=\frac{22}{7}\right)$

[b] In the opposite figure :

$\overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangents to the circle at B, C and $m(\angle A)=40^{\circ}$
Find with proof : m ($\angle \mathrm{D}$)

14 El-Fayoum Governorate

Answer the following questions : (Calculator is allowed)

4 4 Choose the correct answer from those given :

(1) If the straight line L is a tangent to the circle of diameter 8 cm ., then the distance between L and the centre equals \qquad cm .
(a) 3
(b) 4
(c) 6
(d) 8
(a) The angle whose measure is 50° complements an angle of measure
(a) 90°
(b) 130°
(c) 50°
(d) 40°
(3) The inscribed angle which is opposite to the minor arc in a circle is \qquad
(a) reflex.
(b) obtuse.
(c) right.
(d) acute.
(4) ABC is a triangle in which $\mathrm{AB}=\mathrm{AC}, \mathrm{m}(\angle \mathrm{C})=40^{\circ}$, then $\mathrm{m}(\angle \mathrm{A})=$ \qquad
(a) 40°
(b) 80°
(c) 100°
(d) 120°
(5) The number of the symmetry axes of square is \qquad
(a) 1
(b) 2
(c) 3
(d) 4
(6) In the opposite figure :

In the circle M , if $\mathrm{m}(\angle \mathrm{AMC})=140^{\circ}$
, then $\mathrm{m}(\angle \mathrm{ADC})=$ \qquad
(a) 40°
(b) 70°
(c) 110°
(d) 140°

(2) [a] In the opposite figure :

Triangle $A B C$ is inscribed in circle M, in which :
$\mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{C}), \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
,$\overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
Prove that : $\mathrm{MX}=\mathrm{MY}$
[b] In the opposite figure :
$\mathrm{E} \in \overrightarrow{\mathrm{AB}}, \mathrm{E} \notin \overrightarrow{\mathrm{AB}}, \mathrm{m}(\widehat{\mathrm{AB}})=110^{\circ}$
, $\mathrm{m}(\angle \mathrm{CBE})=85^{\circ}$
Find : $m(\angle B D C)$

3] [a] In the opposite figure :
$\overline{\mathrm{AC}}$ is a diameter in a circle $\mathrm{M}, \mathrm{B} \in$ the circle M
, $\mathrm{m}(\angle \mathrm{BAC})=40^{\circ}$
Find : m ($\angle \mathrm{CBM}$)

[b] In the opposite figure :
$A B C$ is an inscribed triangle inside a circle
, $\overline{X Y} / / \overline{\mathrm{BC}}$
Prove that : $\mathrm{m}(\angle \mathrm{XAC})=\mathrm{m}(\angle \mathrm{BAY}) \quad$.

$4]$ [a] In the opposite figure :
M and N are two intersecting circles at A and $B, C \in \overrightarrow{B A}$
, $\mathrm{D} \in$ the circle N and $\mathrm{m}(\angle \mathrm{MND})=125^{\circ}$
, $\mathrm{m}(\angle \mathrm{BCD})=55^{\circ}$
Prove that : $\overleftrightarrow{C D}$ is a tangent to circle N at D

[b] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent-segments to the circle M
$, \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}, \mathrm{m}(\angle \mathrm{BMD})=130^{\circ}$
(1) Prove that: $\overrightarrow{\mathrm{CB}}$ bisects $\angle \mathrm{ACD}$
(2) Find: m ($\angle \mathrm{A})$

5 [a] In the opposite figure:
$A B C$ is a triangle in which $\dot{A B}=A C$
, $\overrightarrow{\mathrm{BX}}$ bisects $\angle \mathrm{B}$ and intersect $\overline{\mathrm{AC}}$ at X
, $\overrightarrow{\mathrm{CY}}$ bisects $\angle \mathrm{C}$ and intersect $\overline{\mathrm{AB}}$ at Y
Prove that : BCXY is a cyclic quadrilateral and prove that : $\overline{\mathrm{XY}} / / \overline{\mathrm{BC}}$

[b] ABC is a triangle inscribed in a circle, $\overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle at A , $X \in \overline{\mathrm{AB}}, Y \in \overline{\mathrm{AC}}$ where $\overline{\mathrm{XY}} / / \overline{\mathrm{BC}}$ Prove that $: \overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the points A, X and Y

Beni Suef Governorate

Answer the following questions : (Calculator is allowed)

1 Choose the correct answer from those given :

(1) It is impossible to draw a circle passing through the vertices of
(a) a triangle.
(b) a square.
(c) a rhombus.
(d) a rectangle.
(a) If m_{1} and m_{2} are the slopes of two perpendicular straight lines, then
(a) $m_{1}+m_{2}=0$
(b) $m_{1}-m_{2}=-1$
(c) $m_{1}=m_{2}$
(d) $m_{1} \times m_{2}=-1$
(3) M and N are two circles touching internally, their radii lengths are 3 cm ., and 5 cm . , then $\mathrm{MN}=$ \qquad cm .
(a) 2
(b) 3
(c) 5
(d) 8
(4) The point of concurence of the medians of the triangle divides each median in the ratio \qquad from its base.
(a) $2: 1$
(b) $1: 2$
(c) $2: 3$
(d) $1: 3$
(5) The measure of the arc which represents $\frac{1}{3}$ the measure of the circle equals
(a) 60°
(b) 90°
(c) 120°
(d) 240°
(6) The area of the rhombus whose diagonal lengths are 8 cm . and 10 cm . equals cm^{2}.
(a) 2
(b) 18
(c) 40
(d) 80

2. [a] In the opposite figure:

$\overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{CD}}, \mathrm{MX}=\mathrm{MY}$ and $A X=3 \mathrm{~cm}$.
Find : The length of $\overline{C D}$

[b] Two concentric circles $\mathrm{M}, \overline{\mathrm{AB}}$ is a chord in the larger circle and intersects
the smaller circle at C, D, draw $\overline{\mathrm{ME}} \perp \overline{\mathrm{AB}}$ Prove that: $\mathrm{AC}=\mathrm{BD}$
(3) [a] In the opposite figure :

In the circle $\mathrm{M}, \mathrm{m}(\angle \mathrm{A})=60^{\circ}$
, $\overline{\mathrm{MD}} \perp \overline{\mathrm{BC}}, \mathrm{MB}=6 \mathrm{~cm}$.
Find with proof : The length of $\overline{\mathrm{MD}}$

[b] In the opposite figure :

$\overline{\mathrm{AC}}$ is a diameter in the circle M
, $\mathrm{AB}=\mathrm{AD}$
Prove that : $\mathrm{m}(\overparen{\mathrm{BC}})=\mathrm{m}(\overparen{\mathrm{CD}})$

4) [a] In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent-segments
to the circle at B and C

$$
, \mathrm{m}(\angle \mathrm{ABC})=65^{\circ}
$$

Find with proof : $\mathrm{m}(\angle \mathrm{A})$ and $\mathrm{m}(\angle \mathrm{D})$
[b] In the opposite figure :
ABC is a triangle in which $\mathrm{AB}=\mathrm{AC}, \overrightarrow{\mathrm{BX}}$ bisects $\angle \mathrm{B}$ and intersects $\overline{\mathrm{AC}}$ at X
, $\overrightarrow{\mathrm{CY}}$ bisects $\angle \mathrm{C}$ and intersects $\overline{\mathrm{AB}}$ at Y
Prove that: The figure BCXY is a cyclic quadrilateral.

[5] [a] In the opposite figure :
$\overline{\mathrm{AD}}$ is a diameter in a circle of centre M
, $\overrightarrow{\mathrm{CA}}$ and $\overrightarrow{\mathrm{CB}}$ are two tangents to the circle at A, B
Prove that : $\mathrm{m}(\angle \mathrm{DMB})=\mathrm{m}(\angle \mathrm{ACB})$

[b] In the opposite figure :
$\mathrm{BA}=\mathrm{BC}, \mathrm{m}(\angle \mathrm{DAC})=140^{\circ}$
and $m(\angle B)=40^{\circ}$

Prove that :

$\overrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the vertices of $\triangle \mathrm{ABC}$

16

El-Menia Governorate

Answer the following questions: (Calculator is allowed)

1 Choose the correct answer from those given :

(1) The two angles A and C in the right-angled triangle at B are \qquad
(a) complementary.
(b) supplementary.
(c) adjacent.
(d) vertically opposite angles.
(2) The length of the opposite to the angle of measure 30° in the right-angled triangle is \qquad the length of the hypotenuse.
(a) $\frac{1}{2}$
(b) $\frac{\sqrt{3}}{2}$
(c) $\sqrt{2}$
(d) 2
(3) The area of the rhombus whose diagonal lengths are $6 \mathrm{~cm} ., 8 \mathrm{~cm}$. is \qquad cm^{2}
(a) 2
(b) 14
(c) 24
(d) 48
(4) The number of circles passing through three non-collinear points is \qquad
(a) 1
(b) zero
(c) 2
(d) 3
(5) In the opposite figure :

In the circle M,
if $\mathrm{m}(\angle \mathrm{M})-\mathrm{m}(\angle \mathrm{A})=50^{\circ}$
, then $\mathrm{m}(\angle \mathrm{A})=$
(a) 40°
(b) 50°
(c) 100°
(d) 130°

(B^{2} Which of the following shapes is a cyclic quadrilateral ?
(a) rhombus
(b) rectangle
(c) parallelogram
(d) trapezium

2] [a] In the opposite figure :
Two congruent circles M and N are intersecting at A and B If $\mathrm{MA}=10 \mathrm{~cm} ., \mathrm{AB}=12 \mathrm{~cm}$.

Find by proof : The length of MN

[b] In the opposite figure :

BCDH is a cyclic quadrilateral in the circle M $, \mathrm{m}(\angle \mathrm{D})=70^{\circ}, \mathrm{A} \in \overrightarrow{\mathrm{CB}}, \mathrm{m}(\angle \mathrm{C})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{H})$
Find by proof: m ($\angle \mathrm{ABH}), \mathrm{m}(\angle \mathrm{H})$

(3) [a] In the opposite figure :

Two concentric circles at M
, $\mathrm{AB}=\mathrm{AC}$
Prove that : $\mathrm{XY}=\mathrm{ZL}$

[b] In the opposite figure :

$\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ are two tangents to the circle M
$, \mathrm{m}(\angle \mathrm{BAC})=70^{\circ}, \mathrm{BC}=\mathrm{BD}$
Find : $m(\angle \mathrm{ABD})$

4] [a] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle M
, $\overline{\mathrm{DC}} / / \overline{\mathrm{AB}}, \mathrm{m}(\angle \mathrm{AMD})=70^{\circ}$
Find by proof : m ($\angle \mathrm{ACD}), \mathrm{m}(\angle \mathrm{ABC})$

[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle M
, $\overline{\mathrm{AB}} / / \overline{\mathrm{DC}}, \mathrm{m}(\overparen{\mathrm{DC}})=80^{\circ}$
, $\mathrm{m}(\widehat{\mathrm{AH}})=100^{\circ}$
Find by proof : m ($\angle \mathrm{DHB}), \mathrm{m}(\angle \mathrm{AOH})$

(5) In the opposite figure:

ABCD is a parallelogram
, $\mathrm{H} \in \overline{\mathrm{BC}}$ such that $\mathrm{AB}=\mathrm{AH}, \mathrm{m}(\angle \mathrm{BAH})=40^{\circ}$
(1) Find: $m(\angle \mathrm{AHB}), m(\angle \mathrm{D})$

(2) Prove that : AHCD is a cyclic quadrilateral.
(3) Prove that: $\overrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the vertices of $\triangle \mathrm{ABH}$

Assiut Governorate

Answer the following questions: (Calculator is allowed)
1 Choose the correct answer :
(1) The chord which passes through the centre of the circle is called
(a) tangent.
(b) diameter.
(c) radius.
(d) side.
(a) The number of symmetry axes of a square \qquad
(a) 2
(b) 3
(c) 4
(d) 5
(3) The inscribed angle which is opposite to the minor arc in a circle is \qquad
(a) reflex.
(b) right.
(c) obtuse.
(d) acute.
(4) In the opposite figure :

ABC is a triangle, $\mathrm{AB}=\mathrm{AC}$
, $\mathrm{m}(\angle \mathrm{B})=50^{\circ}$
, then $m(\angle A)=$

(a) 1.00°
(b) 90°
(c) 80°
(d) 70°
(5) A tangent to a circle of diameter length 8 cm . is at a distance of \qquad cm. from its centre.
(a) 4
(b) 3
(c) 8
(d) 6
(6) In the opposite figure :
$\mathrm{m}(\angle \mathrm{B})=140^{\circ}$
, then $\mathrm{m}(\angle \mathrm{D})=$
(a) 40°
(b) 60°
(c) 30°
(d) 50°

2. [a] In the opposite figure :

A circle $\mathrm{M}, \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$
, $\overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}, \mathrm{m}(\angle \mathrm{B})=70^{\circ}$
(1) Prove that $: \overline{X Y} / / \overline{\mathrm{BC}}$
(2) Find with proof : $\mathrm{m}(\angle \mathrm{YXM})$

[b] In the opposite figure :
$\overline{X Y} / / \overline{\mathrm{CB}}$,
$\overrightarrow{\mathrm{AD}}$ is a tangent to the circle at A

Prove that:

$\overrightarrow{\mathrm{AD}}$ is a tangent to the circle passing through the points A, X and Y

8 [a] In the opposite figure :
$\overrightarrow{\mathrm{CA}}, \overrightarrow{\mathrm{CB}}$ are two tangents to the circle M , $\mathrm{m}(\angle \mathrm{C})=50^{\circ}$
Find with proof: m ($\angle \mathrm{AMB}$)

[b] In the opposite figure :

$\overrightarrow{\mathrm{AB}}$ is a tangent to the circle M at A and $\mathrm{MA}=8 \mathrm{~cm}$.
, $\mathrm{m}(\angle \mathrm{ABM})=30^{\circ}$
Find: (1) The length of $\overline{\mathrm{MB}}$
(2) $m(\overparen{C A})$

(4) [a] In the opposite figure :
$\overrightarrow{\mathrm{AB}}$ is a tangent to the circle at $\mathrm{B}, \mathrm{m}(\angle \mathrm{A})=40^{\circ}$
, $\overrightarrow{\mathrm{AM}}$ intersects the circle M at C and D
Find with proof : $m(\angle B D C)$

[b] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle M
,$\overleftrightarrow{\mathrm{CO}}$ is a tangent to the circle at C and $\overrightarrow{\mathrm{DO}} \perp \overrightarrow{\mathrm{AB}}$
Prove that : (1) ADEC is a cyclic quadrilateral.
(a) $\mathrm{OE}=\mathrm{OC}$

(5) [a] In the opposite figure :
$\mathrm{E} \in \overrightarrow{\mathrm{AB}}, \mathrm{E} \notin \overrightarrow{\mathrm{AB}}$
$, \mathrm{m}(\widehat{\mathrm{AB}})=120^{\circ}, \mathrm{m}(\angle \mathrm{CBE})=85^{\circ}$
Find : $m(\angle B D C)$

[b] In the opposite figure :
$\overrightarrow{X Y}, \overrightarrow{X Z}$ are two tangents to the circle
from the point $X, m(\angle X)=40^{\circ}$
, $\mathrm{m}(\angle \mathrm{D})=110^{\circ}$
Prove that : $\mathrm{m}(\overparen{\mathrm{ZE}})=\mathrm{m}(\overparen{\mathrm{ZY}})$

18 Souhag Governorate

Answer the following questions: (Calculator is allowed)
1 Choose the correct answer :
(1) The two tangents which are drawn from the two endpoints of a diameter of a circle are \qquad
(a) parallel.
(b) equal in length.
(c) congruent.
(d) intersecting.
(a) The number of the axes of symmetry in the equilateral triangle $=$
(a) 1
(b) 2
(c) 3
(d) an infinite number.
(3) M and N are two intersecting circles, their radii lengths are $5 \mathrm{~cm}, 2 \mathrm{~cm}$. , then $\mathrm{MN} \in$
(a) $[3,7]$
(b) $[3,7[$
(c) $] 3,7]$
(d) $] 3,7[$
(4) The number of common tangents of two distant circles is
(a) 1
(b) 2
(c) 3
(d) 4
(5) The length of side opposite to the angle of measure 30° in the right-angled triangle equals \qquad the length of the hypotenuse.
(a) 2
(b) $\frac{1}{2}$
(c) $\frac{1}{3}$
(d) $\frac{1}{4}$
(6) In the opposite figure :
$\overline{\mathrm{AM}} / / \overline{\mathrm{CD}}, \mathrm{MD}=\mathrm{DB}$, $\mathrm{m}(\angle \mathrm{AMB})=90^{\circ}$, then $\mathrm{m}(\overparen{\mathrm{AC}})=$ \qquad
(a) 45°
(b) 60°
(c) 30°
(d) 90°

2 [a] Find the measure of the arc which represents $\frac{1}{2}$ its circle, then calculate the length of this arc if the length of the radius is $7 \mathrm{~cm} .\left(\pi=\frac{22}{7}\right)$
[b] In the opposite figure :
Two concentric circle at $M, \overline{A B}$ and $\overline{A C}$ are two tangents to the smaller circle at D and $\mathrm{E}, \mathrm{m}(\angle \mathrm{A})=70^{\circ}$
(1) Find : m ($\angle \mathrm{DME}$)
(2) Prove that : $\mathrm{AB}=\mathrm{AC}$

(3) [a] In the opposite figure :
$\mathrm{m}(\angle \mathrm{CED})=140^{\circ}$
, $\mathrm{m}(\angle \mathrm{A})=80^{\circ}$
Find: $m(\angle C)$

[b] In the opposite figure :

$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ are two tangents to the circle at B and C , $\mathrm{m}(\angle \mathrm{A})=40^{\circ}$
Find with proof : $m(\angle D)$

4 [a] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter of the circle M ,
$\mathrm{m}(\angle \mathrm{ACD})=115^{\circ}$
Find with proof: m ($\angle \mathrm{DAB}$)

[b] In the opposite figure :

$\overline{\mathrm{AB}}$ is a diameter of the circle M
, $\overline{\mathrm{AC}}$ is a tangent touches it at A
, if $\mathrm{AC}=9 \mathrm{~cm}$. and $\mathrm{BM}=6 \mathrm{~cm}$.
Find : The lengths of $\overline{\mathrm{BC}}$ and $\overline{\mathrm{AD}}$

[5] [a] State three cases of cyclic quadrilateral.

[b] In the opposite figure :

$\mathrm{m}(\angle \mathrm{A})=60^{\circ}, \overrightarrow{\mathrm{BE}}$ bisects $\angle \mathrm{ABC}$
, $\mathrm{m}(\angle \mathrm{B})=70^{\circ}, \overrightarrow{\mathrm{CD}}$ bisects $\angle \mathrm{ACB}$
(1) Find : $m(\angle B M C)$
(2) Prove that : ADME is a cyclic quadrilateral.

19
 Qena Governorate

Answer the following questions: (Calculators are Permitted)

1 Choose the correct answer:

(1) If the area of the circle $\mathrm{M}=16 \pi \mathrm{~cm}^{2}$. A is a point on its plane where $\mathrm{MA}=8 \mathrm{~cm}$. , then A is
(a) outside the circle.
(b) inside the circle.
(c) on the circle.
(d) on the centre of the circle.
(a) A tangent to a circle of diameter length 6 cm . is at distance of \qquad cm . from its centre.
(a) 6
(b) 12
(c) 3
(d) 2
(3) The centre of the circumcircle of the triangle is the intersection point of its
(a) altitudes of triangle.
(b) medians of a triangle.
(c) perpendicular bisectors of the sides of a triangle.
(d) bisectors of its angles.
(4) The inscribed angle drawn in a semicircle is \qquad angle.
(a) acute.
(b) obtuse.
(c) right.
(d) straight.
(5) The two tangent-segments drawn from a point outside a circle are \qquad
(a) equal in length.
(b) not equal in length.
(c) perpendicular.
(d) parallel.
(6) The figure is said to be cyclic quadrilateral if the measure of any exterior angle at any vertex equal to \qquad of the interior angle at the opposite vertex.
(a) the measure.
(b) half the measure.
(c) twice the measure.
(d) third the measure.

(2) [a] In the opposite figure:

$\overline{\mathrm{AB}}$ is a dimeter in the circle M
, $\overleftrightarrow{\mathrm{CF}}$ is a tangent to the circle at $\mathrm{C}, \overrightarrow{\mathrm{DE}} \perp \overrightarrow{\mathrm{AB}}$

Prove that :

(1) ADEC is a cyclic quadrilateral.
(2) $\mathrm{FE}=\mathrm{FC}$

[b] The length of $\overline{\mathrm{AB}}$ is 4 cm ., draw a circle of radius length 3 cm . and passes through the two points A, B how many circles can be drawn? Find the radius length of the smallest circle that can be drawn to pass through the two points A, B
(3) [a] In the opposite figure:
$\overline{\mathrm{AD}}$ is a diameter in the circle M
, $\overrightarrow{\mathrm{CA}}$ and $\overrightarrow{\mathrm{CB}}$ are two tangents to the circle M
at A and B respectively
Prove that : $m(\angle \mathrm{DMB})=\mathrm{m}(\angle \mathrm{ACB})$

[b] In the opposite figure :

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two equal chords in length in circle M and X is the midpoint of $\overline{\mathrm{AB}}, \overrightarrow{\mathrm{MX}}$ intersects the circle at D , $\overrightarrow{\mathrm{MY}} \perp \overline{\mathrm{AC}}$ intersects it at Y and intersects the circle at E
Prove that: $\mathrm{XD}=\mathrm{YE}$

(4) la] In the opposite figure:

Two concentric circles M
, $\overline{\mathrm{AB}}$ is a chord in the larger circle intersecting the smaller circle at C and $\mathrm{D}, \overline{\mathrm{ME}} \perp \overline{\mathrm{AB}}$ Prove that : $\mathrm{AC}=\mathrm{BD}$

[b] In the opposite figure :
M and N are two intersecting circles at A and B
, $\overleftrightarrow{\mathrm{AC}}$ intersects the circle M at C and intersects the circle N at D , $\overleftrightarrow{\mathrm{AE}}$ intersects the circle M at E and intersects the circle N to F

Prove that: $\mathrm{m}(\angle \mathrm{EBC})=\mathrm{m}(\angle \mathrm{FBD})$
5 ABC is an acute-angled triangle drawn inside a circle, draw $\overrightarrow{\Lambda \mathrm{D}} \perp \overrightarrow{\mathrm{BC}}$ to cut $\overline{\mathrm{BC}}$ at D and cuts the circle at E , then draw $\overrightarrow{\mathrm{CN}} \perp \overline{\mathrm{AB}}$ to cut $\overline{\mathrm{AB}}$ at N Porve that : (1) ANDC is a cyclic quadrilateral. \quad (a) $m(\angle B N D)=m(\angle B E D)$

Answer the following questions :

1 Choose the correct answer :
(1) The sum of measures of the accumulative angles at a point $=$ \qquad .${ }^{\circ}$
(a) 80
(b) 120
(c) 360
(d) 630
(2) In the opposite figure :

If $\mathrm{m}(\angle \mathrm{AMB})=52^{\circ}$
, then $m(\overparen{\mathrm{ADB}})=$ \qquad . ${ }^{\circ}$
(a) 52
(b) 104
(c) 128
(d) 308

(3) The length of side opposite to the angle of measure 30° in the right-angled triangle equals \qquad the hypotenuse length.
(a) $\frac{1}{2}$
(b) $\frac{1}{4}$
(c) $\frac{\sqrt{3}}{2}$
(d) 2
(4) In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle M , $m(\angle \mathrm{ABD})=25^{\circ}$, then $\mathrm{m}(\angle \mathrm{C})=$

(a) 50°
(b) 100°
(c) 115°
(d) 125°
(5) The sum of lengths of any two sides of a triangle \qquad the length of the third side.
(a) $<$
(b) $>$
(c) $=$
(d) \leq
(6) The number of circles pass by three non-collinear points =
(a) infmite number.
(b) 3
(c) 1
(d) 0
[2] [a] In the opposite figure:
$\overrightarrow{\mathrm{AD}}$ is a tangent to the circle at D ,
H is the midpoint of $\overline{\mathrm{BC}}$
, $\mathrm{m}(\angle \mathrm{A})=50^{\circ}$

Find with proof : $\mathrm{m}(\angle \mathrm{DMH})$
[b] In the opposite figure :
$\mathrm{m}(\angle \mathrm{ABH})=100^{\circ}$
, $\mathrm{m}(\angle \mathrm{DAC})=40^{\circ}$
Prove that : $\mathrm{m}(\overparen{\mathrm{CD}})=\mathrm{m}(\overparen{\mathrm{AD}})$

(3) [a] In the opposite figure :

$\overline{\mathrm{AB}}$ is a diameter in the circle M
, $\overline{\mathrm{AC}} / / \overline{\mathrm{MD}}, \mathrm{m}(\angle \mathrm{CAB})=50^{\circ}$
Find: $\mathrm{m}(\angle \mathrm{MDB})$

[b] In the opposite figure :

$\overleftrightarrow{\mathrm{AH}}$ and $\overleftrightarrow{\mathrm{CH}}$ are two tangents to the two circles M and N touch the circle M at A and C
touch the circle N at B and D
Prove that : $\mathrm{AB}=\mathrm{CD}$

4) [a] In the opposite figure:
$A B C D$ is a parallelogram $H \in \overrightarrow{C D}$
where $\mathrm{BH}=\mathrm{AD}$
prove that : ABDH is a cyclic quadrilateral.

[b] In the opposite figure :
D is the midpoint of $\overline{\mathrm{AB}}$
, H is the midpoint of $\overline{\mathrm{BC}}$,
$\mathrm{m}(\angle \mathrm{A})=55^{\circ}, \mathrm{MD}=\mathrm{MH}$

Find:m $(\angle B)$
5) [a] In the opposite figure :
$\overrightarrow{\mathrm{MC}} \perp \overrightarrow{\mathrm{AB}}$ and intersects the circle M at D which is the midpoint of $\overparen{A B}$
, $\mathrm{m}(\angle \mathrm{MAB})=20^{\circ}$
Find: $(1) \mathrm{m}(\widehat{\mathrm{AD}}) \quad(2) \mathrm{m}(\angle \mathrm{DHB})$

[b] In the opposite figure :
$\overrightarrow{\mathrm{AD}}$ is a tangent to the circle at A , $\mathrm{m}(\angle \mathrm{B})=70^{\circ}, \mathrm{m}(\mathrm{BC})=120^{\circ}$

Find: $m(\angle B A D)$

Answer the following questions: (Calculator is allowed)

1 Choose the correct answer from the given ones:

(1) In the opposite figure :
$m(\angle \mathrm{~A})=48^{\circ}$, then
the measure of major arc $\widehat{\mathrm{BD}}=$

(a) 260°
(b) 265°
(c) 264°
(d) 262°
(a) In the opposite figure :
$A B C$ is an equilateral triangle inscribed in circle M , then $\mathrm{m}(\angle \mathrm{BMC})=$ \qquad
(a) 50°
(b) 120°
(c) 60°
(d) 100°

(3) In the opposite figure :
D is the midpoint of $\overline{\mathrm{AB}}, \mathrm{H}$ is the midpoint of $\overline{\mathrm{AC}}$
, $\mathrm{m}(\angle \mathrm{A})=55^{\circ}$
, then $\mathrm{m}(\angle \mathrm{DMH})=$ \qquad
\qquad
(a) 120°
(b) 130°
(c) 135°
(d) 125°

(4) Number of axes of symmetry of the circle $=$
(a) zero
(b) one
(c) infinite number.
(d) 4
(5) The length of side opposite to the angle of measure 30° in the right-angled triangle equals \qquad the length of the hypotenuse.
(a) $\frac{\sqrt{3}}{2}$
(b) $\frac{1}{2}$
(c) $\sqrt{2}$
(d) 2
(b) In the opposite figure :
$\overline{\mathrm{AC}}$ is a tangent to circle M at C
if $\mathrm{MC}=5 \mathrm{~cm}$. $\mathrm{AB}=8 \mathrm{~cm}$.
, then $\mathrm{AC}=$ \qquad

(a) 5
(b) 10
(c) 13
(d) 12
[2] [a] M and N are two circles of radii length 9 cm . and 4 cm . respectively.
Show the position of each of them with respect to the other if :
(1) $\mathrm{MN}=5 \mathrm{~cm}$.
(2) $\mathrm{MN}=10 \mathrm{~cm}$.

[b] In the opposite figure :

ABCD is a quadrilateral inscribed in circle M
$, \overrightarrow{\mathrm{BF}} / / \overline{\mathrm{DC}}, \mathrm{m}(\angle \mathrm{EBF})=65^{\circ}, \mathrm{m}(\angle \mathrm{BAD})=120^{\circ}$
Find: m $(\angle A D C)$

3] [a] In the opposite figure :

ABC is a triangle inscribed in circle M , $\mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{C}), \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$

Prove that : MX $=$ MY

[b] In the opposite figure :

$\overrightarrow{\mathrm{AB}}$ is a diameter in circle $\mathrm{M}, \overrightarrow{\mathrm{AB}} \cap \overrightarrow{\mathrm{CD}}=\{\mathrm{H}\}$,
$\mathrm{m}(\angle \mathrm{AHC})=30^{\circ}, \mathrm{m}(\overparen{\mathrm{AC}})=80^{\circ}$
Find : $\mathrm{m}(\widehat{\mathrm{CD}})$

(4) [a] In the opposite figure :

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent-segments to the circle M at B and $\mathrm{C}, \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}, \mathrm{m}(\angle \mathrm{BMD})=130^{\circ}$
(1) Find : $\mathrm{m}(\angle \mathrm{ABC})$
(2) Prove that : $\overrightarrow{\mathrm{CB}}$ bisects $\angle \mathrm{ACD}$

[b] In the opposite figure :
In the circle M,
if $\mathrm{m}(\angle \mathrm{BCD})=130^{\circ}$
Find: $m(\angle B M D)$

(5] [a] In the opposite figure :
Two concentric circles at M
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent-segments to smaller circle at D and H , $\mathrm{m}(\angle \mathrm{BAC})=70^{\circ}$

Prove that: (1) $\mathrm{AB}=\mathrm{AC}$
(2) Find: m ($\angle \mathrm{DMH})$

[b] In the opposite figure :

ABC is a triangle inscribed in a circle,
$\overleftrightarrow{\mathrm{AD}}$ is a tangent to a circle at A
$, X \in \overline{\mathrm{AB}}, \mathrm{Y} \in \overline{\mathrm{AC}}, \overline{\mathrm{XY}} / / \overline{\mathrm{BC}}$

Prove that :

$\stackrel{\mathrm{AD}}{ }$ is a tangent to the circle which passes through the points $\mathrm{A}, \mathrm{X}, \mathrm{Y}$

22 South Sinal Governorate

Answer the following questions :

1) Choose the correct answer from the given ones:
(1) In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle M $\mathrm{m}(\angle \mathrm{ABC})=50^{\circ}$, then $\mathrm{m}(\widehat{\mathrm{BC}})=$ \qquad .${ }^{\circ}$
(a) 40
(b) 50
(c) 80
(d) 100

(2) The rhombus in which the lengths of diagonals are 6 cm . and 8 cm . its area $=$ \qquad cm^{2}
(a) 12
(b) 14
(c) 24
(d) 48
(3) If M is a circle of radius length rcm ., then the length of the simicircle $=$ \qquad
(a) $2 \pi r$
(b) $\frac{1}{4} \pi r$
(c) $\frac{1}{2} \pi r$
(d) πr
(4) The longest chord in the circle is called \qquad
(a) diameter.
(b) tangent.
(c) secant.
(d) radius.
(5) The image of the point $(2,3)$ by rotation $R\left(0,180^{\circ}\right)$ is the point
(a) $(2,3)$
(b) $(-2,3)$
(c) $(2,-3)$
(d) $(-2,-3)$
(6) The sum of measures of the two opposite angles in the cyclic quadrilateral equal \qquad
(a) 180
(b) 120
(c) 100
(d) 30
(2) [a] In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter in the circle M , the length of $(\widehat{A X})=$ the length of $(\overparen{X Y})=$ the length of $(\overparen{B Y})$ find with proof : m ($\angle \mathrm{C}$)

[b] In the opposite figure :

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords in the circle M
, D is the midpoint of $\overline{\mathrm{AB}}$ and E is the midpoint of $\overline{\mathrm{AC}}$,
$\mathrm{m}(\angle \mathrm{BAC})=55^{\circ}$
Find with proof : m (\angle DME)

(3) [a] In the opposite figure :
M is a circle and $\mathrm{m}(\angle \mathrm{AMC})=120^{\circ}$
Find with proof : $\mathrm{m}(\angle \mathrm{ABC})$

[b] Two circles M and N with radii lengths of 7 cm . and 4 cm . respectively
Show the position of each of them respect to the other in the following cases:
(1) $\mathrm{MN}=8 \mathrm{~cm}$.
(a) $\mathrm{MN}=3 \mathrm{~cm}$.
(3) $\mathrm{MN}=12 \mathrm{~cm}$.
(4) [a] In the opposite figure :
$\triangle \mathrm{ABC}, \overline{\mathrm{BE}} \perp \overline{\mathrm{AC}}, \overline{\mathrm{CF}} \perp \overline{\mathrm{AB}}$
$\overrightarrow{\mathrm{AM}} \cap \overleftrightarrow{\mathrm{BC}}=\{\mathrm{D}\}$
Prove that : MDCE is a cyctic quadrilateral.

$\lceil\mathrm{b}]$ In the opposite figure :
M is a circle,,$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords,
$\overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}, \mathrm{AB}=6 \mathrm{~cm}, \mathrm{MX}=\mathrm{MY}$
Find with proof : The length of $\overline{\mathrm{A}} \overline{\mathrm{Y}}$

(5) [a] In the opposite figure :
M is an inscribed circle in the triangle $A B C$ and touches its sides at D, E and F
, $\mathrm{AD}=3 \mathrm{~cm} ., \mathrm{CE}=2 \mathrm{~cm}, \mathrm{BD}=4 \mathrm{~cm}$.
Find with proof: The perimeter of $\triangle \mathrm{ABC}$

[b] In the opposite figure:
$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ are two tangents of the circle M , $\mathrm{m}(\angle \mathrm{D})=65^{\circ}$

Find with proof : $m(\angle A)$

23
 Red Sea Governorate

Answer the following questions :

1 Choose the correct answer from the given ones:
(1) Number of the circles that pass through three non-collinear points equals \qquad
(a) zero
(b) one
(c) three
(d) an infinite number
(a) In the opposite figure :
$\overrightarrow{\mathrm{AB}}$ is a diameter in the circle M
, $\mathrm{m}(\angle \mathrm{ABC})=40^{\circ}$, then $\mathrm{m}(\overparen{\mathrm{BC}})=$ \qquad
(a) 40°
(b) 50°
(c) 90°
(d) 100°

(3) If the two circles M and N are touching externally, their radii lengths are $9 \mathrm{~cm},, \mathrm{rcm}$. , and $\mathrm{MN}=14 \mathrm{~cm}$., then $\mathrm{r}=$ \qquad cm .
(a) 5
(b) 7
(c) 10
(d) 23
(4) In the opposite figure :

If $\mathrm{m}(\angle \mathrm{BAD})=60^{\circ}$, then $\mathrm{m}(\angle \mathrm{BCE})=$ \qquad
(a) 30°
(b) 60°
(c) 80°
(d) 120°

(5) In the opposite figure :

If $\overrightarrow{\mathrm{BD}}$ is a tangent to the circle M
, $\mathrm{m}(\angle \mathrm{BAM})=25^{\circ}$
, then $\mathrm{m}(\angle \mathrm{ABD})=$ \qquad
(a) 25°
(b) 50°
(c) 65°
(d) 120°

(6) Circumference of a circle is $6 \pi \mathrm{~cm}$., L is a straight line at a distance of 3 cm . from its centre, then L is \qquad
(a) a tangent to the circle.
(b) a secant to the circle.
(c) outside the circle.
(d) the diameter to the circle.

2 [a] In the opposite figure :
Two concentric circles M ,
$\overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangents to the smaller circle, $\mathrm{m}(\angle \mathrm{A})=60^{\circ}$
(1) Find : m ($\angle \mathrm{DME})$
(a) Prove that: $\mathrm{AB}=\mathrm{AC}$

[b] In the opposite figure:
$\overline{\mathrm{AB}}, \overline{\mathrm{CD}}$ are two parallel chords , $m(\angle \mathrm{BED})=20^{\circ}$
Find: $m(\overparen{A C})$

(3] [a] In the opposite figure :
ABCD is a quadriteral inscribed in a circle M
where $\mathrm{M} \in \overline{\mathrm{AB}}$
, $\mathrm{m}(\angle \mathrm{BCD})=130^{\circ}$
Find: $m(\angle A), m(\angle A B D)$

[b] In the opposite figure :

In the circle M :
$m(\angle \mathrm{BMC})=100^{\circ}$
, $\mathrm{m}(\angle \mathrm{ABD})=120^{\circ}$
Find with proof : m ($\angle \mathrm{DCB}$)

4 [a] In the opposite figure :
Two concentric circle M
, $\overline{\mathrm{AB}}$ is a chord in the large circle intersecting the small circle at C and D

Prove that : $\mathrm{AC}=\mathrm{BD}$
[b] In the opposite figure :
$\overrightarrow{\mathrm{XA}}$ and $\overrightarrow{\mathrm{XB}}$ are two tangents to a circle at A and B
$, \mathrm{m}(\angle \mathrm{AXB})=70^{\circ}, \mathrm{m}(\angle \mathrm{DCB})=125^{\circ}$
Prove that $: \overrightarrow{\mathrm{AB}}$ bisects $\angle \mathrm{DAX}$

5 [a] In the opposite figure:
$\overline{A B}$ is a tangent to a circle M at B
, $\mathrm{AB}=8 \mathrm{~cm}$. $\mathrm{AM}=10 \mathrm{~cm}$.
Find: The area of $\triangle \mathrm{ABM}$

[b] ABC is a triangle inscribed in a circle,,$\stackrel{\mathrm{BD}}{ }$ is a tangent to the circle at B , $X \in \overline{\mathrm{AB}}, Y \in \overline{\mathrm{BC}}$ where $\overline{X Y} / / \overline{\mathrm{BD}}$

Prove that: AXYC is a cyclic quadrilateral.

24

Matrouh Governorate

Answer the following questions: (Calculator is allowed)

1 Choose the correct answer :

(1) The perimeter of the square whose area is $81 \mathrm{~cm}^{2}$. is \qquad
(a) 24 cm .
(b) 8 cm .
(c) 9 cm .
(d) 36 cm .
(a) The two opposite angles in the cyclic quadrilateral are \qquad
(a) equal.
(b) complementary.
(c) supplementary.
(d) alternate.
(3) ABC is a triangle where $(\mathrm{AB})^{2}=(\mathrm{AC})^{2}+(\mathrm{BC})^{2}, \mathrm{~m}(\angle \mathrm{~B})=40^{\circ}$, then $\mathrm{m}(\angle \mathrm{A})=$ \qquad
(a) 40°
(b) 50°
(c) 90°
(d) 130°
(4) The measure of the arc which represents $\frac{1}{3}$ the measure of the circle equals
(a) 60°
(b) 90°
(c) 120°
(d) 240°
(5) The area of the triangle whose base length is 10 cm . and its height is 6 cm . equals \qquad cm^{2}
(a) 6
(b) 10
(c) 30
(d) 60
(b) If the two circles M, N are touching internally, the radius length of one of them is 3 cm . , and $\mathrm{MN}=8 \mathrm{~cm}$, then the radius length of the other circle equals \qquad
(a) 5 cm .
(b) 6 cm .
(c) 11 cm .
(d) 12 cm .

2 [a] In the opposite figure :

M is a circle whose radius length is 5 cm .
, $\mathrm{XY}=12 \mathrm{~cm}, \overline{\mathrm{MY}} \cap$ the circle $\mathrm{M}=\left\{Z_{p}\right\}$
and $Z Y=8 \mathrm{~cm}$.
Prove that $: \overleftrightarrow{X Y}$ is a tangent to the circle M at X

[b] In the opposite figure :

$\triangle A B C$ is inscribed in the circle M
, in which $\mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{C})$
, X is the midpoint of $\overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overrightarrow{\mathrm{AC}}$
Prove that : $\mathrm{MX}=\mathrm{MY}$

(3) [a] Prove that: The measure of the angle of tangency is equal to the measure of the inscribed angle subtended by the same arc.
[b] ABCD is a quadrilateral drawn in a circle , $\mathrm{F} \in \overline{\mathrm{AB}}$, draw $\overrightarrow{\mathrm{FE}} / / \overline{\mathrm{CB}}$ to cut $\overline{\mathrm{CD}}$ at $\mathrm{E}, \overrightarrow{\mathrm{DF}} \cap \overrightarrow{\mathrm{CB}}=\{\mathrm{X}\}$

Prove that: (1) AFED is a cyclic quadrilateral. (2) $\mathrm{m}(\angle \mathrm{BXF})=\mathrm{m}(\angle \mathrm{EAD})$
(4) [a] In the opposite figure:
$\overline{\mathrm{AB}}$ is a diameter in the circle M
, $\overrightarrow{\mathrm{AB}} \cap \overrightarrow{\mathrm{CD}}=\{\mathrm{E}\}$
$, \mathrm{m}(\angle \mathrm{AEC})=30^{\circ}, \mathrm{m}(\widehat{\mathrm{AC}})=80^{\circ}$

Find: $\mathrm{m}(\widehat{\mathrm{CD}})$

[b] In the opposite figure :

$\overrightarrow{\mathrm{XA}}$ and $\overrightarrow{\mathrm{XB}}$ are two tangents to the circle at A and B
$, \mathrm{m}(\angle \mathrm{AXB})=70^{\circ}, \mathrm{m}(\angle \mathrm{DCB})=125^{\circ}$
Prove that : $\overrightarrow{\mathrm{AB}}$ bisects $\angle \mathrm{DAX}$

5] [a] Mention three cases of the cyclic quadrilateral.
[b] In the opposite figure :
$A B C D$ is a quadrilateral inscribed in the circle M where $\mathrm{M} \in \overline{\mathrm{AB}}, \mathrm{CB}=\mathrm{CD}$
, $\mathrm{m}(\angle \mathrm{BCD})=140^{\circ}$
Find: (1) $m(\angle A)$
(2) $\mathrm{m}(\angle \mathrm{D})$

